მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x\left(5x-25\right)=0
ფრჩხილებს გარეთ გაიტანეთ x.
x=0 x=5
განტოლების პასუხების მისაღებად ამოხსენით x=0 და 5x-25=0.
5x^{2}-25x=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}}}{2\times 5}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 5-ით a, -25-ით b და 0-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±25}{2\times 5}
აიღეთ \left(-25\right)^{2}-ის კვადრატული ფესვი.
x=\frac{25±25}{2\times 5}
-25-ის საპირისპიროა 25.
x=\frac{25±25}{10}
გაამრავლეთ 2-ზე 5.
x=\frac{50}{10}
ახლა ამოხსენით განტოლება x=\frac{25±25}{10} როცა ± პლიუსია. მიუმატეთ 25 25-ს.
x=5
გაყავით 50 10-ზე.
x=\frac{0}{10}
ახლა ამოხსენით განტოლება x=\frac{25±25}{10} როცა ± მინუსია. გამოაკელით 25 25-ს.
x=0
გაყავით 0 10-ზე.
x=5 x=0
განტოლება ახლა ამოხსნილია.
5x^{2}-25x=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
\frac{5x^{2}-25x}{5}=\frac{0}{5}
ორივე მხარე გაყავით 5-ზე.
x^{2}+\left(-\frac{25}{5}\right)x=\frac{0}{5}
5-ზე გაყოფა აუქმებს 5-ზე გამრავლებას.
x^{2}-5x=\frac{0}{5}
გაყავით -25 5-ზე.
x^{2}-5x=0
გაყავით 0 5-ზე.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
გაყავით -5, x წევრის კოეფიციენტი, 2-ზე, -\frac{5}{2}-ის მისაღებად. შემდეგ დაამატეთ -\frac{5}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}-5x+\frac{25}{4}=\frac{25}{4}
აიყვანეთ კვადრატში -\frac{5}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
\left(x-\frac{5}{2}\right)^{2}=\frac{25}{4}
დაშალეთ მამრავლებად x^{2}-5x+\frac{25}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x-\frac{5}{2}=\frac{5}{2} x-\frac{5}{2}=-\frac{5}{2}
გაამარტივეთ.
x=5 x=0
მიუმატეთ \frac{5}{2} განტოლების ორივე მხარეს.