ამოხსნა x-ისთვის
x = -\frac{41}{2} = -20\frac{1}{2} = -20.5
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
10x-15-2\left(4x-7\right)=4\left(x+10\right)
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 5 2x-3-ზე.
10x-15-8x+14=4\left(x+10\right)
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ -2 4x-7-ზე.
2x-15+14=4\left(x+10\right)
დააჯგუფეთ 10x და -8x, რათა მიიღოთ 2x.
2x-1=4\left(x+10\right)
შეკრიბეთ -15 და 14, რათა მიიღოთ -1.
2x-1=4x+40
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 4 x+10-ზე.
2x-1-4x=40
გამოაკელით 4x ორივე მხარეს.
-2x-1=40
დააჯგუფეთ 2x და -4x, რათა მიიღოთ -2x.
-2x=40+1
დაამატეთ 1 ორივე მხარეს.
-2x=41
შეკრიბეთ 40 და 1, რათა მიიღოთ 41.
x=\frac{41}{-2}
ორივე მხარე გაყავით -2-ზე.
x=-\frac{41}{2}
წილადი \frac{41}{-2} შეიძლება ჩაიწეროს როგორც -\frac{41}{2} უარყოფითი ნიშნის მოცილებით.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}