მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x\left(5x-6\right)=0
ფრჩხილებს გარეთ გაიტანეთ x.
x=0 x=\frac{6}{5}
განტოლების პასუხების მისაღებად ამოხსენით x=0 და 5x-6=0.
5x^{2}-6x=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\times 5}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 5-ით a, -6-ით b და 0-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±6}{2\times 5}
აიღეთ \left(-6\right)^{2}-ის კვადრატული ფესვი.
x=\frac{6±6}{2\times 5}
-6-ის საპირისპიროა 6.
x=\frac{6±6}{10}
გაამრავლეთ 2-ზე 5.
x=\frac{12}{10}
ახლა ამოხსენით განტოლება x=\frac{6±6}{10} როცა ± პლიუსია. მიუმატეთ 6 6-ს.
x=\frac{6}{5}
შეამცირეთ წილადი \frac{12}{10} უმცირეს წევრებამდე გამოკლებით და 2-ის შეკვეცით.
x=\frac{0}{10}
ახლა ამოხსენით განტოლება x=\frac{6±6}{10} როცა ± მინუსია. გამოაკელით 6 6-ს.
x=0
გაყავით 0 10-ზე.
x=\frac{6}{5} x=0
განტოლება ახლა ამოხსნილია.
5x^{2}-6x=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
\frac{5x^{2}-6x}{5}=\frac{0}{5}
ორივე მხარე გაყავით 5-ზე.
x^{2}-\frac{6}{5}x=\frac{0}{5}
5-ზე გაყოფა აუქმებს 5-ზე გამრავლებას.
x^{2}-\frac{6}{5}x=0
გაყავით 0 5-ზე.
x^{2}-\frac{6}{5}x+\left(-\frac{3}{5}\right)^{2}=\left(-\frac{3}{5}\right)^{2}
გაყავით -\frac{6}{5}, x წევრის კოეფიციენტი, 2-ზე, -\frac{3}{5}-ის მისაღებად. შემდეგ დაამატეთ -\frac{3}{5}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{9}{25}
აიყვანეთ კვადრატში -\frac{3}{5} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
\left(x-\frac{3}{5}\right)^{2}=\frac{9}{25}
დაშალეთ მამრავლებად x^{2}-\frac{6}{5}x+\frac{9}{25}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{5}\right)^{2}}=\sqrt{\frac{9}{25}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x-\frac{3}{5}=\frac{3}{5} x-\frac{3}{5}=-\frac{3}{5}
გაამარტივეთ.
x=\frac{6}{5} x=0
მიუმატეთ \frac{3}{5} განტოლების ორივე მხარეს.