მამრავლი
\left(3x-2\right)^{2}
შეფასება
\left(3x-2\right)^{2}
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
9x^{2}-12x+4
გადაალაგეთ პოლინომები სტანდარტულ ფორმაში მოსაყვანად. განალაგეთ წევრები უდიდესიდან უმცირეს ხარისხამდე.
a+b=-12 ab=9\times 4=36
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც 9x^{2}+ax+bx+4. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b უარყოფითია, ორივე, a და b უარყოფითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-6 b=-6
ამონახსნი არის წყვილი, რომლის ჯამია -12.
\left(9x^{2}-6x\right)+\left(-6x+4\right)
ხელახლა დაწერეთ 9x^{2}-12x+4, როგორც \left(9x^{2}-6x\right)+\left(-6x+4\right).
3x\left(3x-2\right)-2\left(3x-2\right)
3x-ის პირველ, -2-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(3x-2\right)\left(3x-2\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი 3x-2 დისტრიბუციული თვისების გამოყენებით.
\left(3x-2\right)^{2}
გადაწერეთ ბინომის კვადრატის სახით.
factor(9x^{2}-12x+4)
ამ ტრინომს აქვს ტრინომის კვადრატის ფორმა, რომელიც, შესაძლოა, გამრავლებულია საერთო მამრავლზე. ტრინომის კვადრატების დაშლა მამრავლებად შესაძლებელია პირველი და ბოლო წევრის კვადრატული ფესვების გამოთვლის გზით.
gcf(9,-12,4)=1
გამოთვალეთ კოეფიციენტების უდიდესი საერთო მამრავლი.
\sqrt{9x^{2}}=3x
გამოთვალეთ პირველი წევრის კვადრატული ფესვი, 9x^{2}.
\sqrt{4}=2
გამოთვალეთ ბოლო წევრის კვადრატული ფესვი, 4.
\left(3x-2\right)^{2}
ტრინომის კვადრატი არის ბინომის კვადრატი, რომელიც წარმოადგენს პირველი და ბოლო წევრის კვადრატული ფესვების ჯამს ან სხვაობას, ნიშნით, რომელსაც განსაზღვრავს ტრინომის კვადრატის შუა წევრის ნიშანი.
9x^{2}-12x+4=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 9\times 4}}{2\times 9}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 9\times 4}}{2\times 9}
აიყვანეთ კვადრატში -12.
x=\frac{-\left(-12\right)±\sqrt{144-36\times 4}}{2\times 9}
გაამრავლეთ -4-ზე 9.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 9}
გაამრავლეთ -36-ზე 4.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 9}
მიუმატეთ 144 -144-ს.
x=\frac{-\left(-12\right)±0}{2\times 9}
აიღეთ 0-ის კვადრატული ფესვი.
x=\frac{12±0}{2\times 9}
-12-ის საპირისპიროა 12.
x=\frac{12±0}{18}
გაამრავლეთ 2-ზე 9.
9x^{2}-12x+4=9\left(x-\frac{2}{3}\right)\left(x-\frac{2}{3}\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით \frac{2}{3} x_{1}-ისთვის და \frac{2}{3} x_{2}-ისთვის.
9x^{2}-12x+4=9\times \frac{3x-2}{3}\left(x-\frac{2}{3}\right)
გამოაკელით x \frac{2}{3}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების გამოკლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
9x^{2}-12x+4=9\times \frac{3x-2}{3}\times \frac{3x-2}{3}
გამოაკელით x \frac{2}{3}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების გამოკლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
9x^{2}-12x+4=9\times \frac{\left(3x-2\right)\left(3x-2\right)}{3\times 3}
გაამრავლეთ \frac{3x-2}{3}-ზე \frac{3x-2}{3} მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრებამდე.
9x^{2}-12x+4=9\times \frac{\left(3x-2\right)\left(3x-2\right)}{9}
გაამრავლეთ 3-ზე 3.
9x^{2}-12x+4=\left(3x-2\right)\left(3x-2\right)
შეკვეცეთ უდიდეს საერთო გამყოფზე 9 9 და 9.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}