ამოხსნა x-ისთვის
x=\frac{1}{2}=0.5
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
a+b=-8 ab=4\times 3=12
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც 4x^{2}+ax+bx+3. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,-12 -2,-6 -3,-4
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b უარყოფითია, ორივე, a და b უარყოფითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 12.
-1-12=-13 -2-6=-8 -3-4=-7
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-6 b=-2
ამონახსნი არის წყვილი, რომლის ჯამია -8.
\left(4x^{2}-6x\right)+\left(-2x+3\right)
ხელახლა დაწერეთ 4x^{2}-8x+3, როგორც \left(4x^{2}-6x\right)+\left(-2x+3\right).
2x\left(2x-3\right)-\left(2x-3\right)
2x-ის პირველ, -1-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(2x-3\right)\left(2x-1\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი 2x-3 დისტრიბუციული თვისების გამოყენებით.
x=\frac{3}{2} x=\frac{1}{2}
განტოლების პასუხების მისაღებად ამოხსენით 2x-3=0 და 2x-1=0.
4x^{2}-8x+3=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\times 3}}{2\times 4}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 4-ით a, -8-ით b და 3-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 4\times 3}}{2\times 4}
აიყვანეთ კვადრატში -8.
x=\frac{-\left(-8\right)±\sqrt{64-16\times 3}}{2\times 4}
გაამრავლეთ -4-ზე 4.
x=\frac{-\left(-8\right)±\sqrt{64-48}}{2\times 4}
გაამრავლეთ -16-ზე 3.
x=\frac{-\left(-8\right)±\sqrt{16}}{2\times 4}
მიუმატეთ 64 -48-ს.
x=\frac{-\left(-8\right)±4}{2\times 4}
აიღეთ 16-ის კვადრატული ფესვი.
x=\frac{8±4}{2\times 4}
-8-ის საპირისპიროა 8.
x=\frac{8±4}{8}
გაამრავლეთ 2-ზე 4.
x=\frac{12}{8}
ახლა ამოხსენით განტოლება x=\frac{8±4}{8} როცა ± პლიუსია. მიუმატეთ 8 4-ს.
x=\frac{3}{2}
შეამცირეთ წილადი \frac{12}{8} უმცირეს წევრებამდე გამოკლებით და 4-ის შეკვეცით.
x=\frac{4}{8}
ახლა ამოხსენით განტოლება x=\frac{8±4}{8} როცა ± მინუსია. გამოაკელით 4 8-ს.
x=\frac{1}{2}
შეამცირეთ წილადი \frac{4}{8} უმცირეს წევრებამდე გამოკლებით და 4-ის შეკვეცით.
x=\frac{3}{2} x=\frac{1}{2}
განტოლება ახლა ამოხსნილია.
4x^{2}-8x+3=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
4x^{2}-8x+3-3=-3
გამოაკელით 3 განტოლების ორივე მხარეს.
4x^{2}-8x=-3
3-იდან იმავე რიცხვის გამოკლების შედეგია 0.
\frac{4x^{2}-8x}{4}=-\frac{3}{4}
ორივე მხარე გაყავით 4-ზე.
x^{2}+\left(-\frac{8}{4}\right)x=-\frac{3}{4}
4-ზე გაყოფა აუქმებს 4-ზე გამრავლებას.
x^{2}-2x=-\frac{3}{4}
გაყავით -8 4-ზე.
x^{2}-2x+1=-\frac{3}{4}+1
გაყავით -2, x წევრის კოეფიციენტი, 2-ზე, -1-ის მისაღებად. შემდეგ დაამატეთ -1-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}-2x+1=\frac{1}{4}
მიუმატეთ -\frac{3}{4} 1-ს.
\left(x-1\right)^{2}=\frac{1}{4}
დაშალეთ მამრავლებად x^{2}-2x+1. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{1}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x-1=\frac{1}{2} x-1=-\frac{1}{2}
გაამარტივეთ.
x=\frac{3}{2} x=\frac{1}{2}
მიუმატეთ 1 განტოლების ორივე მხარეს.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}