მამრავლი
\left(2x-7\right)^{2}
შეფასება
\left(2x-7\right)^{2}
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
a+b=-28 ab=4\times 49=196
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც 4x^{2}+ax+bx+49. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,-196 -2,-98 -4,-49 -7,-28 -14,-14
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b უარყოფითია, ორივე, a და b უარყოფითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 196.
-1-196=-197 -2-98=-100 -4-49=-53 -7-28=-35 -14-14=-28
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-14 b=-14
ამონახსნი არის წყვილი, რომლის ჯამია -28.
\left(4x^{2}-14x\right)+\left(-14x+49\right)
ხელახლა დაწერეთ 4x^{2}-28x+49, როგორც \left(4x^{2}-14x\right)+\left(-14x+49\right).
2x\left(2x-7\right)-7\left(2x-7\right)
2x-ის პირველ, -7-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(2x-7\right)\left(2x-7\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი 2x-7 დისტრიბუციული თვისების გამოყენებით.
\left(2x-7\right)^{2}
გადაწერეთ ბინომის კვადრატის სახით.
factor(4x^{2}-28x+49)
ამ ტრინომს აქვს ტრინომის კვადრატის ფორმა, რომელიც, შესაძლოა, გამრავლებულია საერთო მამრავლზე. ტრინომის კვადრატების დაშლა მამრავლებად შესაძლებელია პირველი და ბოლო წევრის კვადრატული ფესვების გამოთვლის გზით.
gcf(4,-28,49)=1
გამოთვალეთ კოეფიციენტების უდიდესი საერთო მამრავლი.
\sqrt{4x^{2}}=2x
გამოთვალეთ პირველი წევრის კვადრატული ფესვი, 4x^{2}.
\sqrt{49}=7
გამოთვალეთ ბოლო წევრის კვადრატული ფესვი, 49.
\left(2x-7\right)^{2}
ტრინომის კვადრატი არის ბინომის კვადრატი, რომელიც წარმოადგენს პირველი და ბოლო წევრის კვადრატული ფესვების ჯამს ან სხვაობას, ნიშნით, რომელსაც განსაზღვრავს ტრინომის კვადრატის შუა წევრის ნიშანი.
4x^{2}-28x+49=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 4\times 49}}{2\times 4}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 4\times 49}}{2\times 4}
აიყვანეთ კვადრატში -28.
x=\frac{-\left(-28\right)±\sqrt{784-16\times 49}}{2\times 4}
გაამრავლეთ -4-ზე 4.
x=\frac{-\left(-28\right)±\sqrt{784-784}}{2\times 4}
გაამრავლეთ -16-ზე 49.
x=\frac{-\left(-28\right)±\sqrt{0}}{2\times 4}
მიუმატეთ 784 -784-ს.
x=\frac{-\left(-28\right)±0}{2\times 4}
აიღეთ 0-ის კვადრატული ფესვი.
x=\frac{28±0}{2\times 4}
-28-ის საპირისპიროა 28.
x=\frac{28±0}{8}
გაამრავლეთ 2-ზე 4.
4x^{2}-28x+49=4\left(x-\frac{7}{2}\right)\left(x-\frac{7}{2}\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით \frac{7}{2} x_{1}-ისთვის და \frac{7}{2} x_{2}-ისთვის.
4x^{2}-28x+49=4\times \frac{2x-7}{2}\left(x-\frac{7}{2}\right)
გამოაკელით x \frac{7}{2}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების გამოკლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
4x^{2}-28x+49=4\times \frac{2x-7}{2}\times \frac{2x-7}{2}
გამოაკელით x \frac{7}{2}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების გამოკლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
4x^{2}-28x+49=4\times \frac{\left(2x-7\right)\left(2x-7\right)}{2\times 2}
გაამრავლეთ \frac{2x-7}{2}-ზე \frac{2x-7}{2} მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრებამდე.
4x^{2}-28x+49=4\times \frac{\left(2x-7\right)\left(2x-7\right)}{4}
გაამრავლეთ 2-ზე 2.
4x^{2}-28x+49=\left(2x-7\right)\left(2x-7\right)
შეკვეცეთ უდიდეს საერთო გამყოფზე 4 4 და 4.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}