ამოხსნა x-ისთვის
x=-\frac{1}{2}=-0.5
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
a+b=4 ab=4\times 1=4
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც 4x^{2}+ax+bx+1. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,4 2,2
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b დადებითია, ორივე, a და b დადებითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 4.
1+4=5 2+2=4
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=2 b=2
ამონახსნი არის წყვილი, რომლის ჯამია 4.
\left(4x^{2}+2x\right)+\left(2x+1\right)
ხელახლა დაწერეთ 4x^{2}+4x+1, როგორც \left(4x^{2}+2x\right)+\left(2x+1\right).
2x\left(2x+1\right)+2x+1
მამრავლებად დაშალეთ 2x 4x^{2}+2x-ში.
\left(2x+1\right)\left(2x+1\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი 2x+1 დისტრიბუციული თვისების გამოყენებით.
\left(2x+1\right)^{2}
გადაწერეთ ბინომის კვადრატის სახით.
x=-\frac{1}{2}
განტოლების პასუხის მისაღებად ამოხსენით 2x+1=0.
4x^{2}+4x+1=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-4±\sqrt{4^{2}-4\times 4}}{2\times 4}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 4-ით a, 4-ით b და 1-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4}}{2\times 4}
აიყვანეთ კვადრატში 4.
x=\frac{-4±\sqrt{16-16}}{2\times 4}
გაამრავლეთ -4-ზე 4.
x=\frac{-4±\sqrt{0}}{2\times 4}
მიუმატეთ 16 -16-ს.
x=-\frac{4}{2\times 4}
აიღეთ 0-ის კვადრატული ფესვი.
x=-\frac{4}{8}
გაამრავლეთ 2-ზე 4.
x=-\frac{1}{2}
შეამცირეთ წილადი \frac{-4}{8} უმცირეს წევრებამდე გამოკლებით და 4-ის შეკვეცით.
4x^{2}+4x+1=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
4x^{2}+4x+1-1=-1
გამოაკელით 1 განტოლების ორივე მხარეს.
4x^{2}+4x=-1
1-იდან იმავე რიცხვის გამოკლების შედეგია 0.
\frac{4x^{2}+4x}{4}=-\frac{1}{4}
ორივე მხარე გაყავით 4-ზე.
x^{2}+\frac{4}{4}x=-\frac{1}{4}
4-ზე გაყოფა აუქმებს 4-ზე გამრავლებას.
x^{2}+x=-\frac{1}{4}
გაყავით 4 4-ზე.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-\frac{1}{4}+\left(\frac{1}{2}\right)^{2}
გაყავით 1, x წევრის კოეფიციენტი, 2-ზე, \frac{1}{2}-ის მისაღებად. შემდეგ დაამატეთ \frac{1}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+x+\frac{1}{4}=\frac{-1+1}{4}
აიყვანეთ კვადრატში \frac{1}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}+x+\frac{1}{4}=0
მიუმატეთ -\frac{1}{4} \frac{1}{4}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
\left(x+\frac{1}{2}\right)^{2}=0
დაშალეთ მამრავლებად x^{2}+x+\frac{1}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{0}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+\frac{1}{2}=0 x+\frac{1}{2}=0
გაამარტივეთ.
x=-\frac{1}{2} x=-\frac{1}{2}
გამოაკელით \frac{1}{2} განტოლების ორივე მხარეს.
x=-\frac{1}{2}
განტოლება ახლა ამოხსნილია. ამონახსბები იგივეა.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}