მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის (complex solution)
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

3x+3-x^{2}=4x+5
გამოაკელით x^{2} ორივე მხარეს.
3x+3-x^{2}-4x=5
გამოაკელით 4x ორივე მხარეს.
-x+3-x^{2}=5
დააჯგუფეთ 3x და -4x, რათა მიიღოთ -x.
-x+3-x^{2}-5=0
გამოაკელით 5 ორივე მხარეს.
-x-2-x^{2}=0
გამოაკელით 5 3-ს -2-ის მისაღებად.
-x^{2}-x-2=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ -1-ით a, -1-ით b და -2-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4\left(-2\right)}}{2\left(-1\right)}
გაამრავლეთ -4-ზე -1.
x=\frac{-\left(-1\right)±\sqrt{1-8}}{2\left(-1\right)}
გაამრავლეთ 4-ზე -2.
x=\frac{-\left(-1\right)±\sqrt{-7}}{2\left(-1\right)}
მიუმატეთ 1 -8-ს.
x=\frac{-\left(-1\right)±\sqrt{7}i}{2\left(-1\right)}
აიღეთ -7-ის კვადრატული ფესვი.
x=\frac{1±\sqrt{7}i}{2\left(-1\right)}
-1-ის საპირისპიროა 1.
x=\frac{1±\sqrt{7}i}{-2}
გაამრავლეთ 2-ზე -1.
x=\frac{1+\sqrt{7}i}{-2}
ახლა ამოხსენით განტოლება x=\frac{1±\sqrt{7}i}{-2} როცა ± პლიუსია. მიუმატეთ 1 i\sqrt{7}-ს.
x=\frac{-\sqrt{7}i-1}{2}
გაყავით 1+i\sqrt{7} -2-ზე.
x=\frac{-\sqrt{7}i+1}{-2}
ახლა ამოხსენით განტოლება x=\frac{1±\sqrt{7}i}{-2} როცა ± მინუსია. გამოაკელით i\sqrt{7} 1-ს.
x=\frac{-1+\sqrt{7}i}{2}
გაყავით 1-i\sqrt{7} -2-ზე.
x=\frac{-\sqrt{7}i-1}{2} x=\frac{-1+\sqrt{7}i}{2}
განტოლება ახლა ამოხსნილია.
3x+3-x^{2}=4x+5
გამოაკელით x^{2} ორივე მხარეს.
3x+3-x^{2}-4x=5
გამოაკელით 4x ორივე მხარეს.
-x+3-x^{2}=5
დააჯგუფეთ 3x და -4x, რათა მიიღოთ -x.
-x-x^{2}=5-3
გამოაკელით 3 ორივე მხარეს.
-x-x^{2}=2
გამოაკელით 3 5-ს 2-ის მისაღებად.
-x^{2}-x=2
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
\frac{-x^{2}-x}{-1}=\frac{2}{-1}
ორივე მხარე გაყავით -1-ზე.
x^{2}+\left(-\frac{1}{-1}\right)x=\frac{2}{-1}
-1-ზე გაყოფა აუქმებს -1-ზე გამრავლებას.
x^{2}+x=\frac{2}{-1}
გაყავით -1 -1-ზე.
x^{2}+x=-2
გაყავით 2 -1-ზე.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-2+\left(\frac{1}{2}\right)^{2}
გაყავით 1, x წევრის კოეფიციენტი, 2-ზე, \frac{1}{2}-ის მისაღებად. შემდეგ დაამატეთ \frac{1}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+x+\frac{1}{4}=-2+\frac{1}{4}
აიყვანეთ კვადრატში \frac{1}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}+x+\frac{1}{4}=-\frac{7}{4}
მიუმატეთ -2 \frac{1}{4}-ს.
\left(x+\frac{1}{2}\right)^{2}=-\frac{7}{4}
დაშალეთ მამრავლებად x^{2}+x+\frac{1}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{7}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+\frac{1}{2}=\frac{\sqrt{7}i}{2} x+\frac{1}{2}=-\frac{\sqrt{7}i}{2}
გაამარტივეთ.
x=\frac{-1+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i-1}{2}
გამოაკელით \frac{1}{2} განტოლების ორივე მხარეს.