მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\frac{3}{10}\left(x+1\right)<\frac{51}{100}+x
შეამცირეთ წილადი \frac{30}{100} უმცირეს წევრებამდე გამოკლებით და 10-ის შეკვეცით.
\frac{3}{10}x+\frac{3}{10}<\frac{51}{100}+x
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ \frac{3}{10} x+1-ზე.
\frac{3}{10}x+\frac{3}{10}-x<\frac{51}{100}
გამოაკელით x ორივე მხარეს.
-\frac{7}{10}x+\frac{3}{10}<\frac{51}{100}
დააჯგუფეთ \frac{3}{10}x და -x, რათა მიიღოთ -\frac{7}{10}x.
-\frac{7}{10}x<\frac{51}{100}-\frac{3}{10}
გამოაკელით \frac{3}{10} ორივე მხარეს.
-\frac{7}{10}x<\frac{51}{100}-\frac{30}{100}
100-ისა და 10-ის უმცირესი საერთო მამრავლი არის 100. გადაიყვანეთ \frac{51}{100} და \frac{3}{10} წილადებად, რომელთა მნიშვნელია 100.
-\frac{7}{10}x<\frac{51-30}{100}
რადგან \frac{51}{100}-სა და \frac{30}{100}-ს აქვს იგივე მნიშვნელი, გამოაკელით მათი მრიცხველები.
-\frac{7}{10}x<\frac{21}{100}
გამოაკელით 30 51-ს 21-ის მისაღებად.
x>\frac{21}{100}\left(-\frac{10}{7}\right)
გაამრავლეთ ორივე მხარე -\frac{10}{7}-ზე, შექცეული სიდიდე -\frac{7}{10}. რადგან -\frac{7}{10} უარყოფითია, უტოლობის მიმართულება შეიცვალა.
x>\frac{21\left(-10\right)}{100\times 7}
გაამრავლეთ \frac{21}{100}-ზე -\frac{10}{7}-ჯერ მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით.
x>\frac{-210}{700}
განახორციელეთ გამრავლება წილადში \frac{21\left(-10\right)}{100\times 7}.
x>-\frac{3}{10}
შეამცირეთ წილადი \frac{-210}{700} უმცირეს წევრებამდე გამოკლებით და 70-ის შეკვეცით.