ამოხსნა x-ისთვის
x\geq -\frac{4}{15}
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
3-11x-\frac{1}{4}x\leq 6
გამოაკელით \frac{1}{4}x ორივე მხარეს.
3-\frac{45}{4}x\leq 6
დააჯგუფეთ -11x და -\frac{1}{4}x, რათა მიიღოთ -\frac{45}{4}x.
-\frac{45}{4}x\leq 6-3
გამოაკელით 3 ორივე მხარეს.
-\frac{45}{4}x\leq 3
გამოაკელით 3 6-ს 3-ის მისაღებად.
x\geq 3\left(-\frac{4}{45}\right)
გაამრავლეთ ორივე მხარე -\frac{4}{45}-ზე, შექცეული სიდიდე -\frac{45}{4}. რადგან -\frac{45}{4} უარყოფითია, უტოლობის მიმართულება შეიცვალა.
x\geq \frac{3\left(-4\right)}{45}
გამოხატეთ 3\left(-\frac{4}{45}\right) ერთიანი წილადის სახით.
x\geq \frac{-12}{45}
გადაამრავლეთ 3 და -4, რათა მიიღოთ -12.
x\geq -\frac{4}{15}
შეამცირეთ წილადი \frac{-12}{45} უმცირეს წევრებამდე გამოკლებით და 3-ის შეკვეცით.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}