ამოხსნა x-ისთვის
x=3
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
\left(6x+3\right)\left(2x-1\right)-4\left(3x-2\right)\left(3x+2\right)+6x\left(4x+1\right)=31
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 3 2x+1-ზე.
12x^{2}-3-4\left(3x-2\right)\left(3x+2\right)+6x\left(4x+1\right)=31
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ 6x+3 2x-1-ზე და დააჯგუფეთ მსგავსი წევრები.
12x^{2}-3-4\left(3x-2\right)\left(3x+2\right)+24x^{2}+6x=31
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 6x 4x+1-ზე.
12x^{2}-3+\left(-12x+8\right)\left(3x+2\right)+24x^{2}+6x=31
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ -4 3x-2-ზე.
12x^{2}-3-36x^{2}+16+24x^{2}+6x=31
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ -12x+8 3x+2-ზე და დააჯგუფეთ მსგავსი წევრები.
-24x^{2}-3+16+24x^{2}+6x=31
დააჯგუფეთ 12x^{2} და -36x^{2}, რათა მიიღოთ -24x^{2}.
-24x^{2}+13+24x^{2}+6x=31
შეკრიბეთ -3 და 16, რათა მიიღოთ 13.
13+6x=31
დააჯგუფეთ -24x^{2} და 24x^{2}, რათა მიიღოთ 0.
6x=31-13
გამოაკელით 13 ორივე მხარეს.
6x=18
გამოაკელით 13 31-ს 18-ის მისაღებად.
x=\frac{18}{6}
ორივე მხარე გაყავით 6-ზე.
x=3
გაყავით 18 6-ზე 3-ის მისაღებად.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}