მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

3x^{4}+x^{3}+2x^{2}+4x-40=0
გამოსახულების მამრავლებად დასაშლელად, ამოხსენით განტოლება, სადაც იგი უდრის 0.
±\frac{40}{3},±40,±\frac{20}{3},±20,±\frac{10}{3},±10,±\frac{8}{3},±8,±\frac{5}{3},±5,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს-40 და q ყოფს უფროს კოეფიციენტს 3. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
x=-2
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
3x^{3}-5x^{2}+12x-20=0
ბეზუს თეორემის მიხედვით, x-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით 3x^{4}+x^{3}+2x^{2}+4x-40 x+2-ზე 3x^{3}-5x^{2}+12x-20-ის მისაღებად. შედეგის მამრავლებად დასაშლელად, ამოხსენით განტოლება, სადაც იგი უდრის 0.
±\frac{20}{3},±20,±\frac{10}{3},±10,±\frac{5}{3},±5,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს-20 და q ყოფს უფროს კოეფიციენტს 3. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
x=\frac{5}{3}
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
x^{2}+4=0
ბეზუს თეორემის მიხედვით, x-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით 3x^{3}-5x^{2}+12x-20 3\left(x-\frac{5}{3}\right)=3x-5-ზე x^{2}+4-ის მისაღებად. შედეგის მამრავლებად დასაშლელად, ამოხსენით განტოლება, სადაც იგი უდრის 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 4}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 1 a-თვის, 0 b-თვის და 4 c-თვის კვადრატულ ფორმულაში.
x=\frac{0±\sqrt{-16}}{2}
შეასრულეთ გამოთვლები.
x^{2}+4
მრავალწევრი x^{2}+4 არ იშლება მამრავლებად, რადგან მას არ აქვს რაციონალური ფესვები.
\left(3x-5\right)\left(x+2\right)\left(x^{2}+4\right)
გადაწერეთ მამრავლებად დაშლილი გამოსახულება მიღებული ფესვების გამოყენებით.