მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x\left(3x-18\right)=0
ფრჩხილებს გარეთ გაიტანეთ x.
x=0 x=6
განტოლების პასუხების მისაღებად ამოხსენით x=0 და 3x-18=0.
3x^{2}-18x=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}}}{2\times 3}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 3-ით a, -18-ით b და 0-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±18}{2\times 3}
აიღეთ \left(-18\right)^{2}-ის კვადრატული ფესვი.
x=\frac{18±18}{2\times 3}
-18-ის საპირისპიროა 18.
x=\frac{18±18}{6}
გაამრავლეთ 2-ზე 3.
x=\frac{36}{6}
ახლა ამოხსენით განტოლება x=\frac{18±18}{6} როცა ± პლიუსია. მიუმატეთ 18 18-ს.
x=6
გაყავით 36 6-ზე.
x=\frac{0}{6}
ახლა ამოხსენით განტოლება x=\frac{18±18}{6} როცა ± მინუსია. გამოაკელით 18 18-ს.
x=0
გაყავით 0 6-ზე.
x=6 x=0
განტოლება ახლა ამოხსნილია.
3x^{2}-18x=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
\frac{3x^{2}-18x}{3}=\frac{0}{3}
ორივე მხარე გაყავით 3-ზე.
x^{2}+\left(-\frac{18}{3}\right)x=\frac{0}{3}
3-ზე გაყოფა აუქმებს 3-ზე გამრავლებას.
x^{2}-6x=\frac{0}{3}
გაყავით -18 3-ზე.
x^{2}-6x=0
გაყავით 0 3-ზე.
x^{2}-6x+\left(-3\right)^{2}=\left(-3\right)^{2}
გაყავით -6, x წევრის კოეფიციენტი, 2-ზე, -3-ის მისაღებად. შემდეგ დაამატეთ -3-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}-6x+9=9
აიყვანეთ კვადრატში -3.
\left(x-3\right)^{2}=9
დაშალეთ მამრავლებად x^{2}-6x+9. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{9}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x-3=3 x-3=-3
გაამარტივეთ.
x=6 x=0
მიუმატეთ 3 განტოლების ორივე მხარეს.