გადამოწმება
ტყუილი
გაზიარება
კოპირებულია ბუფერში
180\times \frac{3\times 15+7}{15}-13\left(3\times 15+8\right)=676\times \frac{124}{13}
გაამრავლეთ განტოლების ორივე მხარე 195-ზე, 15,13-ის უმცირეს საერთო მამრავლზე.
180\times \frac{45+7}{15}-13\left(3\times 15+8\right)=676\times \frac{124}{13}
გადაამრავლეთ 3 და 15, რათა მიიღოთ 45.
180\times \frac{52}{15}-13\left(3\times 15+8\right)=676\times \frac{124}{13}
შეკრიბეთ 45 და 7, რათა მიიღოთ 52.
\frac{180\times 52}{15}-13\left(3\times 15+8\right)=676\times \frac{124}{13}
გამოხატეთ 180\times \frac{52}{15} ერთიანი წილადის სახით.
\frac{9360}{15}-13\left(3\times 15+8\right)=676\times \frac{124}{13}
გადაამრავლეთ 180 და 52, რათა მიიღოთ 9360.
624-13\left(3\times 15+8\right)=676\times \frac{124}{13}
გაყავით 9360 15-ზე 624-ის მისაღებად.
624-13\left(45+8\right)=676\times \frac{124}{13}
გადაამრავლეთ 3 და 15, რათა მიიღოთ 45.
624-13\times 53=676\times \frac{124}{13}
შეკრიბეთ 45 და 8, რათა მიიღოთ 53.
624-689=676\times \frac{124}{13}
გადაამრავლეთ -13 და 53, რათა მიიღოთ -689.
-65=676\times \frac{124}{13}
გამოაკელით 689 624-ს -65-ის მისაღებად.
-65=\frac{676\times 124}{13}
გამოხატეთ 676\times \frac{124}{13} ერთიანი წილადის სახით.
-65=\frac{83824}{13}
გადაამრავლეთ 676 და 124, რათა მიიღოთ 83824.
-65=6448
გაყავით 83824 13-ზე 6448-ის მისაღებად.
\text{false}
შეადარეთ -65 და 6448.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}