ამოხსნა x-ისთვის
x = \frac{32}{7} = 4\frac{4}{7} \approx 4.571428571
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
21-\left(5x-3x-\left(-1\right)\right)=5x-12
3x-1-ის საპირისპირო მნიშვნელობის პოვნისთვის, იპოვეთ იგი ყოველი წევრისთვის.
21-\left(5x-3x+1\right)=5x-12
-1-ის საპირისპიროა 1.
21-\left(2x+1\right)=5x-12
დააჯგუფეთ 5x და -3x, რათა მიიღოთ 2x.
21-2x-1=5x-12
2x+1-ის საპირისპირო მნიშვნელობის პოვნისთვის, იპოვეთ იგი ყოველი წევრისთვის.
20-2x=5x-12
გამოაკელით 1 21-ს 20-ის მისაღებად.
20-2x-5x=-12
გამოაკელით 5x ორივე მხარეს.
20-7x=-12
დააჯგუფეთ -2x და -5x, რათა მიიღოთ -7x.
-7x=-12-20
გამოაკელით 20 ორივე მხარეს.
-7x=-32
გამოაკელით 20 -12-ს -32-ის მისაღებად.
x=\frac{-32}{-7}
ორივე მხარე გაყავით -7-ზე.
x=\frac{32}{7}
წილადი \frac{-32}{-7} შეიძლება გამარტივდეს როგორც \frac{32}{7} მრიცხველიდან და მნიშვნელიდან უარყოფითი ნიშნის მოცილებით.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}