ამოხსნა m-ისთვის
m=2x+4-\frac{48}{x}
x\neq 0
ამოხსნა x-ისთვის
x=\frac{\sqrt{m^{2}-8m+400}+m-4}{4}
x=\frac{-\sqrt{m^{2}-8m+400}+m-4}{4}
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
2x^{2}-\left(mx-4x\right)-48=0
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ m-4 x-ზე.
2x^{2}-mx+4x-48=0
mx-4x-ის საპირისპირო მნიშვნელობის პოვნისთვის, იპოვეთ იგი ყოველი წევრისთვის.
-mx+4x-48=-2x^{2}
გამოაკელით 2x^{2} ორივე მხარეს. ნულს გამოკლებული ნებისმიერი რიცხვი უდრის ამავე უარყოფით რიცხვს.
-mx-48=-2x^{2}-4x
გამოაკელით 4x ორივე მხარეს.
-mx=-2x^{2}-4x+48
დაამატეთ 48 ორივე მხარეს.
\left(-x\right)m=48-4x-2x^{2}
განტოლება სტანდარტული ფორმისაა.
\frac{\left(-x\right)m}{-x}=\frac{2\left(4-x\right)\left(x+6\right)}{-x}
ორივე მხარე გაყავით -x-ზე.
m=\frac{2\left(4-x\right)\left(x+6\right)}{-x}
-x-ზე გაყოფა აუქმებს -x-ზე გამრავლებას.
m=2x+4-\frac{48}{x}
გაყავით 2\left(4-x\right)\left(6+x\right) -x-ზე.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}