მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა
ვიქტორინა
Polynomial

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

2x^{2}+7x-75=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-7±\sqrt{7^{2}-4\times 2\left(-75\right)}}{2\times 2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-7±\sqrt{49-4\times 2\left(-75\right)}}{2\times 2}
აიყვანეთ კვადრატში 7.
x=\frac{-7±\sqrt{49-8\left(-75\right)}}{2\times 2}
გაამრავლეთ -4-ზე 2.
x=\frac{-7±\sqrt{49+600}}{2\times 2}
გაამრავლეთ -8-ზე -75.
x=\frac{-7±\sqrt{649}}{2\times 2}
მიუმატეთ 49 600-ს.
x=\frac{-7±\sqrt{649}}{4}
გაამრავლეთ 2-ზე 2.
x=\frac{\sqrt{649}-7}{4}
ახლა ამოხსენით განტოლება x=\frac{-7±\sqrt{649}}{4} როცა ± პლიუსია. მიუმატეთ -7 \sqrt{649}-ს.
x=\frac{-\sqrt{649}-7}{4}
ახლა ამოხსენით განტოლება x=\frac{-7±\sqrt{649}}{4} როცა ± მინუსია. გამოაკელით \sqrt{649} -7-ს.
2x^{2}+7x-75=2\left(x-\frac{\sqrt{649}-7}{4}\right)\left(x-\frac{-\sqrt{649}-7}{4}\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით \frac{-7+\sqrt{649}}{4} x_{1}-ისთვის და \frac{-7-\sqrt{649}}{4} x_{2}-ისთვის.