მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

2\left(x^{2}+6x-7\right)
ფრჩხილებს გარეთ გაიტანეთ 2.
a+b=6 ab=1\left(-7\right)=-7
განვიხილოთ x^{2}+6x-7. მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც x^{2}+ax+bx-7. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
a=-1 b=7
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. ერთადერთი ასეთი წყვილი არის სისტემის ამონახსნი.
\left(x^{2}-x\right)+\left(7x-7\right)
ხელახლა დაწერეთ x^{2}+6x-7, როგორც \left(x^{2}-x\right)+\left(7x-7\right).
x\left(x-1\right)+7\left(x-1\right)
x-ის პირველ, 7-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-1\right)\left(x+7\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-1 დისტრიბუციული თვისების გამოყენებით.
2\left(x-1\right)\left(x+7\right)
გადაწერეთ სრული მამრავლებად დაშლილი გამოსახულება.
2x^{2}+12x-14=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-12±\sqrt{12^{2}-4\times 2\left(-14\right)}}{2\times 2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-12±\sqrt{144-4\times 2\left(-14\right)}}{2\times 2}
აიყვანეთ კვადრატში 12.
x=\frac{-12±\sqrt{144-8\left(-14\right)}}{2\times 2}
გაამრავლეთ -4-ზე 2.
x=\frac{-12±\sqrt{144+112}}{2\times 2}
გაამრავლეთ -8-ზე -14.
x=\frac{-12±\sqrt{256}}{2\times 2}
მიუმატეთ 144 112-ს.
x=\frac{-12±16}{2\times 2}
აიღეთ 256-ის კვადრატული ფესვი.
x=\frac{-12±16}{4}
გაამრავლეთ 2-ზე 2.
x=\frac{4}{4}
ახლა ამოხსენით განტოლება x=\frac{-12±16}{4} როცა ± პლიუსია. მიუმატეთ -12 16-ს.
x=1
გაყავით 4 4-ზე.
x=-\frac{28}{4}
ახლა ამოხსენით განტოლება x=\frac{-12±16}{4} როცა ± მინუსია. გამოაკელით 16 -12-ს.
x=-7
გაყავით -28 4-ზე.
2x^{2}+12x-14=2\left(x-1\right)\left(x-\left(-7\right)\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით 1 x_{1}-ისთვის და -7 x_{2}-ისთვის.
2x^{2}+12x-14=2\left(x-1\right)\left(x+7\right)
გაამარტივეთ გამოსახულება p-\left(-q\right) p+q-მდე.