ამოხსნა x-ისთვის
x=-1
x=2
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
2x+4-2x^{2}=0
გამოაკელით 2x^{2} ორივე მხარეს.
x+2-x^{2}=0
ორივე მხარე გაყავით 2-ზე.
-x^{2}+x+2=0
გადაალაგეთ პოლინომები სტანდარტულ ფორმაში მოსაყვანად. განალაგეთ წევრები უდიდესიდან უმცირეს ხარისხამდე.
a+b=1 ab=-2=-2
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც -x^{2}+ax+bx+2. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
a=2 b=-1
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. ერთადერთი ასეთი წყვილი არის სისტემის ამონახსნი.
\left(-x^{2}+2x\right)+\left(-x+2\right)
ხელახლა დაწერეთ -x^{2}+x+2, როგორც \left(-x^{2}+2x\right)+\left(-x+2\right).
-x\left(x-2\right)-\left(x-2\right)
-x-ის პირველ, -1-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-2\right)\left(-x-1\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-2 დისტრიბუციული თვისების გამოყენებით.
x=2 x=-1
განტოლების პასუხების მისაღებად ამოხსენით x-2=0 და -x-1=0.
2x+4-2x^{2}=0
გამოაკელით 2x^{2} ორივე მხარეს.
-2x^{2}+2x+4=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-2±\sqrt{2^{2}-4\left(-2\right)\times 4}}{2\left(-2\right)}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ -2-ით a, 2-ით b და 4-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-2\right)\times 4}}{2\left(-2\right)}
აიყვანეთ კვადრატში 2.
x=\frac{-2±\sqrt{4+8\times 4}}{2\left(-2\right)}
გაამრავლეთ -4-ზე -2.
x=\frac{-2±\sqrt{4+32}}{2\left(-2\right)}
გაამრავლეთ 8-ზე 4.
x=\frac{-2±\sqrt{36}}{2\left(-2\right)}
მიუმატეთ 4 32-ს.
x=\frac{-2±6}{2\left(-2\right)}
აიღეთ 36-ის კვადრატული ფესვი.
x=\frac{-2±6}{-4}
გაამრავლეთ 2-ზე -2.
x=\frac{4}{-4}
ახლა ამოხსენით განტოლება x=\frac{-2±6}{-4} როცა ± პლიუსია. მიუმატეთ -2 6-ს.
x=-1
გაყავით 4 -4-ზე.
x=-\frac{8}{-4}
ახლა ამოხსენით განტოლება x=\frac{-2±6}{-4} როცა ± მინუსია. გამოაკელით 6 -2-ს.
x=2
გაყავით -8 -4-ზე.
x=-1 x=2
განტოლება ახლა ამოხსნილია.
2x+4-2x^{2}=0
გამოაკელით 2x^{2} ორივე მხარეს.
2x-2x^{2}=-4
გამოაკელით 4 ორივე მხარეს. ნულს გამოკლებული ნებისმიერი რიცხვი უდრის ამავე უარყოფით რიცხვს.
-2x^{2}+2x=-4
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
\frac{-2x^{2}+2x}{-2}=-\frac{4}{-2}
ორივე მხარე გაყავით -2-ზე.
x^{2}+\frac{2}{-2}x=-\frac{4}{-2}
-2-ზე გაყოფა აუქმებს -2-ზე გამრავლებას.
x^{2}-x=-\frac{4}{-2}
გაყავით 2 -2-ზე.
x^{2}-x=2
გაყავით -4 -2-ზე.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
გაყავით -1, x წევრის კოეფიციენტი, 2-ზე, -\frac{1}{2}-ის მისაღებად. შემდეგ დაამატეთ -\frac{1}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
აიყვანეთ კვადრატში -\frac{1}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}-x+\frac{1}{4}=\frac{9}{4}
მიუმატეთ 2 \frac{1}{4}-ს.
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
დაშალეთ მამრავლებად x^{2}-x+\frac{1}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
გაამარტივეთ.
x=2 x=-1
მიუმატეთ \frac{1}{2} განტოლების ორივე მხარეს.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}