მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის (complex solution)
Tick mark Image
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

2xx^{2}+x^{2}+1=0
ცვლადი x არ შეიძლება იყოს 0-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x^{2}-ზე.
2x^{3}+x^{2}+1=0
იმავე ფუძის ჯერადი რიცხვების გასამრავლებლად, შეკრიბეთ მათი ექსპონენტები. შეკრიბეთ 1 და 2 რომ მიიღოთ 3.
±\frac{1}{2},±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს1 და q ყოფს უფროს კოეფიციენტს 2. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
x=-1
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
2x^{2}-x+1=0
ბეზუს თეორემის მიხედვით, x-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით 2x^{3}+x^{2}+1 x+1-ზე 2x^{2}-x+1-ის მისაღებად. ამოხსენით განტოლება, სადაც შედეგი უდრის 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 2\times 1}}{2\times 2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 2 a-თვის, -1 b-თვის და 1 c-თვის კვადრატულ ფორმულაში.
x=\frac{1±\sqrt{-7}}{4}
შეასრულეთ გამოთვლები.
x=\frac{-\sqrt{7}i+1}{4} x=\frac{1+\sqrt{7}i}{4}
ამოხსენით განტოლება 2x^{2}-x+1=0, როცა ± არის პლუსი და როცა ± არის მინუსი.
x=-1 x=\frac{-\sqrt{7}i+1}{4} x=\frac{1+\sqrt{7}i}{4}
ჩამოთვალეთ ყველა ნაპოვნი ამოხსნა.
2xx^{2}+x^{2}+1=0
ცვლადი x არ შეიძლება იყოს 0-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x^{2}-ზე.
2x^{3}+x^{2}+1=0
იმავე ფუძის ჯერადი რიცხვების გასამრავლებლად, შეკრიბეთ მათი ექსპონენტები. შეკრიბეთ 1 და 2 რომ მიიღოთ 3.
±\frac{1}{2},±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს1 და q ყოფს უფროს კოეფიციენტს 2. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
x=-1
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
2x^{2}-x+1=0
ბეზუს თეორემის მიხედვით, x-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით 2x^{3}+x^{2}+1 x+1-ზე 2x^{2}-x+1-ის მისაღებად. ამოხსენით განტოლება, სადაც შედეგი უდრის 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 2\times 1}}{2\times 2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 2 a-თვის, -1 b-თვის და 1 c-თვის კვადრატულ ფორმულაში.
x=\frac{1±\sqrt{-7}}{4}
შეასრულეთ გამოთვლები.
x\in \emptyset
ვინაიდან უარყოფითი რიცხვის კვადრატული ფესვი არ არის განსაზღვრული რეალურ ველში, ამონახსნი არ არსებობს.
x=-1
ჩამოთვალეთ ყველა ნაპოვნი ამოხსნა.