მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა
ვიქტორინა
Polynomial

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

2\left(x^{2}-4x+8\right)
ფრჩხილებს გარეთ გაიტანეთ 2. მრავალწევრი x^{2}-4x+8 არ იშლება მამრავლებად, რადგან მას არ აქვს რაციონალური ფესვები.
2x^{2}-8x+16=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 16}}{2\times 2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 16}}{2\times 2}
აიყვანეთ კვადრატში -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\times 16}}{2\times 2}
გაამრავლეთ -4-ზე 2.
x=\frac{-\left(-8\right)±\sqrt{64-128}}{2\times 2}
გაამრავლეთ -8-ზე 16.
x=\frac{-\left(-8\right)±\sqrt{-64}}{2\times 2}
მიუმატეთ 64 -128-ს.
2x^{2}-8x+16
ვინაიდან უარყოფითი რიცხვის კვადრატული ფესვი არ არის განსაზღვრული რეალურ ველში, ამონახსნი არ არსებობს. კვადრატული პოლინომის მამრავლებად დაშლა შეუძლებელია.