ამოხსნა x-ისთვის
x = \frac{\sqrt{3} + 1}{2} \approx 1.366025404
x=\frac{1-\sqrt{3}}{2}\approx -0.366025404
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
2x^{2}-2x=1
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
2x^{2}-2x-1=1-1
გამოაკელით 1 განტოლების ორივე მხარეს.
2x^{2}-2x-1=0
1-იდან იმავე რიცხვის გამოკლების შედეგია 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 2-ით a, -2-ით b და -1-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-1\right)}}{2\times 2}
აიყვანეთ კვადრატში -2.
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-1\right)}}{2\times 2}
გაამრავლეთ -4-ზე 2.
x=\frac{-\left(-2\right)±\sqrt{4+8}}{2\times 2}
გაამრავლეთ -8-ზე -1.
x=\frac{-\left(-2\right)±\sqrt{12}}{2\times 2}
მიუმატეთ 4 8-ს.
x=\frac{-\left(-2\right)±2\sqrt{3}}{2\times 2}
აიღეთ 12-ის კვადრატული ფესვი.
x=\frac{2±2\sqrt{3}}{2\times 2}
-2-ის საპირისპიროა 2.
x=\frac{2±2\sqrt{3}}{4}
გაამრავლეთ 2-ზე 2.
x=\frac{2\sqrt{3}+2}{4}
ახლა ამოხსენით განტოლება x=\frac{2±2\sqrt{3}}{4} როცა ± პლიუსია. მიუმატეთ 2 2\sqrt{3}-ს.
x=\frac{\sqrt{3}+1}{2}
გაყავით 2+2\sqrt{3} 4-ზე.
x=\frac{2-2\sqrt{3}}{4}
ახლა ამოხსენით განტოლება x=\frac{2±2\sqrt{3}}{4} როცა ± მინუსია. გამოაკელით 2\sqrt{3} 2-ს.
x=\frac{1-\sqrt{3}}{2}
გაყავით 2-2\sqrt{3} 4-ზე.
x=\frac{\sqrt{3}+1}{2} x=\frac{1-\sqrt{3}}{2}
განტოლება ახლა ამოხსნილია.
2x^{2}-2x=1
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
\frac{2x^{2}-2x}{2}=\frac{1}{2}
ორივე მხარე გაყავით 2-ზე.
x^{2}+\left(-\frac{2}{2}\right)x=\frac{1}{2}
2-ზე გაყოფა აუქმებს 2-ზე გამრავლებას.
x^{2}-x=\frac{1}{2}
გაყავით -2 2-ზე.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{2}\right)^{2}
გაყავით -1, x წევრის კოეფიციენტი, 2-ზე, -\frac{1}{2}-ის მისაღებად. შემდეგ დაამატეთ -\frac{1}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}-x+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}
აიყვანეთ კვადრატში -\frac{1}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}-x+\frac{1}{4}=\frac{3}{4}
მიუმატეთ \frac{1}{2} \frac{1}{4}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
\left(x-\frac{1}{2}\right)^{2}=\frac{3}{4}
დაშალეთ მამრავლებად x^{2}-x+\frac{1}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x-\frac{1}{2}=\frac{\sqrt{3}}{2} x-\frac{1}{2}=-\frac{\sqrt{3}}{2}
გაამარტივეთ.
x=\frac{\sqrt{3}+1}{2} x=\frac{1-\sqrt{3}}{2}
მიუმატეთ \frac{1}{2} განტოლების ორივე მხარეს.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}