მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=9 ab=2\left(-5\right)=-10
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც 2x^{2}+ax+bx-5. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,10 -2,5
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -10.
-1+10=9 -2+5=3
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-1 b=10
ამონახსნი არის წყვილი, რომლის ჯამია 9.
\left(2x^{2}-x\right)+\left(10x-5\right)
ხელახლა დაწერეთ 2x^{2}+9x-5, როგორც \left(2x^{2}-x\right)+\left(10x-5\right).
x\left(2x-1\right)+5\left(2x-1\right)
x-ის პირველ, 5-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(2x-1\right)\left(x+5\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი 2x-1 დისტრიბუციული თვისების გამოყენებით.
2x^{2}+9x-5=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-9±\sqrt{9^{2}-4\times 2\left(-5\right)}}{2\times 2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-9±\sqrt{81-4\times 2\left(-5\right)}}{2\times 2}
აიყვანეთ კვადრატში 9.
x=\frac{-9±\sqrt{81-8\left(-5\right)}}{2\times 2}
გაამრავლეთ -4-ზე 2.
x=\frac{-9±\sqrt{81+40}}{2\times 2}
გაამრავლეთ -8-ზე -5.
x=\frac{-9±\sqrt{121}}{2\times 2}
მიუმატეთ 81 40-ს.
x=\frac{-9±11}{2\times 2}
აიღეთ 121-ის კვადრატული ფესვი.
x=\frac{-9±11}{4}
გაამრავლეთ 2-ზე 2.
x=\frac{2}{4}
ახლა ამოხსენით განტოლება x=\frac{-9±11}{4} როცა ± პლიუსია. მიუმატეთ -9 11-ს.
x=\frac{1}{2}
შეამცირეთ წილადი \frac{2}{4} უმცირეს წევრებამდე გამოკლებით და 2-ის შეკვეცით.
x=-\frac{20}{4}
ახლა ამოხსენით განტოლება x=\frac{-9±11}{4} როცა ± მინუსია. გამოაკელით 11 -9-ს.
x=-5
გაყავით -20 4-ზე.
2x^{2}+9x-5=2\left(x-\frac{1}{2}\right)\left(x-\left(-5\right)\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით \frac{1}{2} x_{1}-ისთვის და -5 x_{2}-ისთვის.
2x^{2}+9x-5=2\left(x-\frac{1}{2}\right)\left(x+5\right)
გაამარტივეთ გამოსახულება p-\left(-q\right) p+q-მდე.
2x^{2}+9x-5=2\times \frac{2x-1}{2}\left(x+5\right)
გამოაკელით x \frac{1}{2}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების გამოკლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
2x^{2}+9x-5=\left(2x-1\right)\left(x+5\right)
შეკვეცეთ უდიდეს საერთო გამყოფზე 2 2 და 2.