ამოხსნა C-ისთვის
C=-\frac{\sqrt{2}\left(16-c^{2}\right)}{4}
ამოხსნა c-ისთვის (complex solution)
c=-\sqrt{2\sqrt{2}C+16}
c=\sqrt{2\sqrt{2}C+16}
ამოხსნა c-ისთვის
c=\sqrt{2\sqrt{2}C+16}
c=-\sqrt{2\sqrt{2}C+16}\text{, }C\geq -4\sqrt{2}
გაზიარება
კოპირებულია ბუფერში
2\sqrt{2}C=c^{2}-16
განტოლება სტანდარტული ფორმისაა.
\frac{2\sqrt{2}C}{2\sqrt{2}}=\frac{c^{2}-16}{2\sqrt{2}}
ორივე მხარე გაყავით 2\sqrt{2}-ზე.
C=\frac{c^{2}-16}{2\sqrt{2}}
2\sqrt{2}-ზე გაყოფა აუქმებს 2\sqrt{2}-ზე გამრავლებას.
C=\frac{\sqrt{2}\left(c^{2}-16\right)}{4}
გაყავით c^{2}-16 2\sqrt{2}-ზე.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}