მამრავლი
\left(4x+1\right)^{2}
შეფასება
\left(4x+1\right)^{2}
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
a+b=8 ab=16\times 1=16
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც 16x^{2}+ax+bx+1. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,16 2,8 4,4
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b დადებითია, ორივე, a და b დადებითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 16.
1+16=17 2+8=10 4+4=8
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=4 b=4
ამონახსნი არის წყვილი, რომლის ჯამია 8.
\left(16x^{2}+4x\right)+\left(4x+1\right)
ხელახლა დაწერეთ 16x^{2}+8x+1, როგორც \left(16x^{2}+4x\right)+\left(4x+1\right).
4x\left(4x+1\right)+4x+1
მამრავლებად დაშალეთ 4x 16x^{2}+4x-ში.
\left(4x+1\right)\left(4x+1\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი 4x+1 დისტრიბუციული თვისების გამოყენებით.
\left(4x+1\right)^{2}
გადაწერეთ ბინომის კვადრატის სახით.
factor(16x^{2}+8x+1)
ამ ტრინომს აქვს ტრინომის კვადრატის ფორმა, რომელიც, შესაძლოა, გამრავლებულია საერთო მამრავლზე. ტრინომის კვადრატების დაშლა მამრავლებად შესაძლებელია პირველი და ბოლო წევრის კვადრატული ფესვების გამოთვლის გზით.
gcf(16,8,1)=1
გამოთვალეთ კოეფიციენტების უდიდესი საერთო მამრავლი.
\sqrt{16x^{2}}=4x
გამოთვალეთ პირველი წევრის კვადრატული ფესვი, 16x^{2}.
\left(4x+1\right)^{2}
ტრინომის კვადრატი არის ბინომის კვადრატი, რომელიც წარმოადგენს პირველი და ბოლო წევრის კვადრატული ფესვების ჯამს ან სხვაობას, ნიშნით, რომელსაც განსაზღვრავს ტრინომის კვადრატის შუა წევრის ნიშანი.
16x^{2}+8x+1=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-8±\sqrt{8^{2}-4\times 16}}{2\times 16}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-8±\sqrt{64-4\times 16}}{2\times 16}
აიყვანეთ კვადრატში 8.
x=\frac{-8±\sqrt{64-64}}{2\times 16}
გაამრავლეთ -4-ზე 16.
x=\frac{-8±\sqrt{0}}{2\times 16}
მიუმატეთ 64 -64-ს.
x=\frac{-8±0}{2\times 16}
აიღეთ 0-ის კვადრატული ფესვი.
x=\frac{-8±0}{32}
გაამრავლეთ 2-ზე 16.
16x^{2}+8x+1=16\left(x-\left(-\frac{1}{4}\right)\right)\left(x-\left(-\frac{1}{4}\right)\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით -\frac{1}{4} x_{1}-ისთვის და -\frac{1}{4} x_{2}-ისთვის.
16x^{2}+8x+1=16\left(x+\frac{1}{4}\right)\left(x+\frac{1}{4}\right)
გაამარტივეთ გამოსახულება p-\left(-q\right) p+q-მდე.
16x^{2}+8x+1=16\times \frac{4x+1}{4}\left(x+\frac{1}{4}\right)
მიუმატეთ \frac{1}{4} x-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
16x^{2}+8x+1=16\times \frac{4x+1}{4}\times \frac{4x+1}{4}
მიუმატეთ \frac{1}{4} x-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
16x^{2}+8x+1=16\times \frac{\left(4x+1\right)\left(4x+1\right)}{4\times 4}
გაამრავლეთ \frac{4x+1}{4}-ზე \frac{4x+1}{4} მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრებამდე.
16x^{2}+8x+1=16\times \frac{\left(4x+1\right)\left(4x+1\right)}{16}
გაამრავლეთ 4-ზე 4.
16x^{2}+8x+1=\left(4x+1\right)\left(4x+1\right)
შეკვეცეთ უდიდეს საერთო გამყოფზე 16 16 და 16.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}