მამრავლი
b\left(14-9b\right)
შეფასება
b\left(14-9b\right)
გაზიარება
კოპირებულია ბუფერში
b\left(14-9b\right)
ფრჩხილებს გარეთ გაიტანეთ b.
-9b^{2}+14b=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
b=\frac{-14±\sqrt{14^{2}}}{2\left(-9\right)}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
b=\frac{-14±14}{2\left(-9\right)}
აიღეთ 14^{2}-ის კვადრატული ფესვი.
b=\frac{-14±14}{-18}
გაამრავლეთ 2-ზე -9.
b=\frac{0}{-18}
ახლა ამოხსენით განტოლება b=\frac{-14±14}{-18} როცა ± პლიუსია. მიუმატეთ -14 14-ს.
b=0
გაყავით 0 -18-ზე.
b=-\frac{28}{-18}
ახლა ამოხსენით განტოლება b=\frac{-14±14}{-18} როცა ± მინუსია. გამოაკელით 14 -14-ს.
b=\frac{14}{9}
შეამცირეთ წილადი \frac{-28}{-18} უმცირეს წევრებამდე გამოკლებით და 2-ის შეკვეცით.
-9b^{2}+14b=-9b\left(b-\frac{14}{9}\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით 0 x_{1}-ისთვის და \frac{14}{9} x_{2}-ისთვის.
-9b^{2}+14b=-9b\times \frac{-9b+14}{-9}
გამოაკელით b \frac{14}{9}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების გამოკლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
-9b^{2}+14b=b\left(-9b+14\right)
შეკვეცეთ უდიდეს საერთო გამყოფზე 9 -9 და -9.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}