ამოხსნა x-ისთვის
x=-\frac{90}{91}\approx -0.989010989
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
x+90=-90x
ცვლადი x არ შეიძლება იყოს -90-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x+90-ზე.
x+90+90x=0
დაამატეთ 90x ორივე მხარეს.
91x+90=0
დააჯგუფეთ x და 90x, რათა მიიღოთ 91x.
91x=-90
გამოაკელით 90 ორივე მხარეს. ნულს გამოკლებული ნებისმიერი რიცხვი უდრის ამავე უარყოფით რიცხვს.
x=\frac{-90}{91}
ორივე მხარე გაყავით 91-ზე.
x=-\frac{90}{91}
წილადი \frac{-90}{91} შეიძლება ჩაიწეროს როგორც -\frac{90}{91} უარყოფითი ნიშნის მოცილებით.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}