მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=4 ab=-\left(-4\right)=4
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც -x^{2}+ax+bx-4. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,4 2,2
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b დადებითია, ორივე, a და b დადებითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 4.
1+4=5 2+2=4
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=2 b=2
ამონახსნი არის წყვილი, რომლის ჯამია 4.
\left(-x^{2}+2x\right)+\left(2x-4\right)
ხელახლა დაწერეთ -x^{2}+4x-4, როგორც \left(-x^{2}+2x\right)+\left(2x-4\right).
-x\left(x-2\right)+2\left(x-2\right)
-x-ის პირველ, 2-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-2\right)\left(-x+2\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-2 დისტრიბუციული თვისების გამოყენებით.
-x^{2}+4x-4=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-4±\sqrt{16-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
აიყვანეთ კვადრატში 4.
x=\frac{-4±\sqrt{16+4\left(-4\right)}}{2\left(-1\right)}
გაამრავლეთ -4-ზე -1.
x=\frac{-4±\sqrt{16-16}}{2\left(-1\right)}
გაამრავლეთ 4-ზე -4.
x=\frac{-4±\sqrt{0}}{2\left(-1\right)}
მიუმატეთ 16 -16-ს.
x=\frac{-4±0}{2\left(-1\right)}
აიღეთ 0-ის კვადრატული ფესვი.
x=\frac{-4±0}{-2}
გაამრავლეთ 2-ზე -1.
-x^{2}+4x-4=-\left(x-2\right)\left(x-2\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით 2 x_{1}-ისთვის და 2 x_{2}-ისთვის.