მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

-4x+\frac{3}{2}<10x+5-\frac{1}{4}
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ -5 -2x-1-ზე.
-4x+\frac{3}{2}<10x+\frac{20}{4}-\frac{1}{4}
გადაიყვანეთ 5 წილადად \frac{20}{4}.
-4x+\frac{3}{2}<10x+\frac{20-1}{4}
რადგან \frac{20}{4}-სა და \frac{1}{4}-ს აქვს იგივე მნიშვნელი, გამოაკელით მათი მრიცხველები.
-4x+\frac{3}{2}<10x+\frac{19}{4}
გამოაკელით 1 20-ს 19-ის მისაღებად.
-4x+\frac{3}{2}-10x<\frac{19}{4}
გამოაკელით 10x ორივე მხარეს.
-14x+\frac{3}{2}<\frac{19}{4}
დააჯგუფეთ -4x და -10x, რათა მიიღოთ -14x.
-14x<\frac{19}{4}-\frac{3}{2}
გამოაკელით \frac{3}{2} ორივე მხარეს.
-14x<\frac{19}{4}-\frac{6}{4}
4-ისა და 2-ის უმცირესი საერთო მამრავლი არის 4. გადაიყვანეთ \frac{19}{4} და \frac{3}{2} წილადებად, რომელთა მნიშვნელია 4.
-14x<\frac{19-6}{4}
რადგან \frac{19}{4}-სა და \frac{6}{4}-ს აქვს იგივე მნიშვნელი, გამოაკელით მათი მრიცხველები.
-14x<\frac{13}{4}
გამოაკელით 6 19-ს 13-ის მისაღებად.
x>\frac{\frac{13}{4}}{-14}
ორივე მხარე გაყავით -14-ზე. რადგან -14 უარყოფითია, უტოლობის მიმართულება შეიცვალა.
x>\frac{13}{4\left(-14\right)}
გამოხატეთ \frac{\frac{13}{4}}{-14} ერთიანი წილადის სახით.
x>\frac{13}{-56}
გადაამრავლეთ 4 და -14, რათა მიიღოთ -56.
x>-\frac{13}{56}
წილადი \frac{13}{-56} შეიძლება ჩაიწეროს როგორც -\frac{13}{56} უარყოფითი ნიშნის მოცილებით.