მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის (complex solution)
Tick mark Image
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

-2x+3x^{3}-20=0
გამოაკელით 20 ორივე მხარეს.
3x^{3}-2x-20=0
გადაალაგეთ განტოლების წევრები, რათა მიიღოს სტანდარტული ფორმა. განალაგეთ წევრები უდიდესი ხარისხიდან უმცირეს ხარისხამდე თანმიმდევრობით.
±\frac{20}{3},±20,±\frac{10}{3},±10,±\frac{5}{3},±5,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს-20 და q ყოფს უფროს კოეფიციენტს 3. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
x=2
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
3x^{2}+6x+10=0
ბეზუს თეორემის მიხედვით, x-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით 3x^{3}-2x-20 x-2-ზე 3x^{2}+6x+10-ის მისაღებად. ამოხსენით განტოლება, სადაც შედეგი უდრის 0.
x=\frac{-6±\sqrt{6^{2}-4\times 3\times 10}}{2\times 3}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 3 a-თვის, 6 b-თვის და 10 c-თვის კვადრატულ ფორმულაში.
x=\frac{-6±\sqrt{-84}}{6}
შეასრულეთ გამოთვლები.
x=-\frac{\sqrt{21}i}{3}-1 x=\frac{\sqrt{21}i}{3}-1
ამოხსენით განტოლება 3x^{2}+6x+10=0, როცა ± არის პლუსი და როცა ± არის მინუსი.
x=2 x=-\frac{\sqrt{21}i}{3}-1 x=\frac{\sqrt{21}i}{3}-1
ჩამოთვალეთ ყველა ნაპოვნი ამოხსნა.
-2x+3x^{3}-20=0
გამოაკელით 20 ორივე მხარეს.
3x^{3}-2x-20=0
გადაალაგეთ განტოლების წევრები, რათა მიიღოს სტანდარტული ფორმა. განალაგეთ წევრები უდიდესი ხარისხიდან უმცირეს ხარისხამდე თანმიმდევრობით.
±\frac{20}{3},±20,±\frac{10}{3},±10,±\frac{5}{3},±5,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს-20 და q ყოფს უფროს კოეფიციენტს 3. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
x=2
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
3x^{2}+6x+10=0
ბეზუს თეორემის მიხედვით, x-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით 3x^{3}-2x-20 x-2-ზე 3x^{2}+6x+10-ის მისაღებად. ამოხსენით განტოლება, სადაც შედეგი უდრის 0.
x=\frac{-6±\sqrt{6^{2}-4\times 3\times 10}}{2\times 3}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 3 a-თვის, 6 b-თვის და 10 c-თვის კვადრატულ ფორმულაში.
x=\frac{-6±\sqrt{-84}}{6}
შეასრულეთ გამოთვლები.
x\in \emptyset
ვინაიდან უარყოფითი რიცხვის კვადრატული ფესვი არ არის განსაზღვრული რეალურ ველში, ამონახსნი არ არსებობს.
x=2
ჩამოთვალეთ ყველა ნაპოვნი ამოხსნა.