შეფასება
-\frac{53}{60}\approx -0.883333333
მამრავლი
-\frac{53}{60} = -0.8833333333333333
გაზიარება
კოპირებულია ბუფერში
-\frac{1}{3}\times \frac{2}{5}-\frac{3}{4}
გადაამრავლეთ 0 და 5, რათა მიიღოთ 0.
\frac{-2}{3\times 5}-\frac{3}{4}
გაამრავლეთ -\frac{1}{3}-ზე \frac{2}{5}-ჯერ მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით.
\frac{-2}{15}-\frac{3}{4}
განახორციელეთ გამრავლება წილადში \frac{-2}{3\times 5}.
-\frac{2}{15}-\frac{3}{4}
წილადი \frac{-2}{15} შეიძლება ჩაიწეროს როგორც -\frac{2}{15} უარყოფითი ნიშნის მოცილებით.
-\frac{8}{60}-\frac{45}{60}
15-ისა და 4-ის უმცირესი საერთო მამრავლი არის 60. გადაიყვანეთ -\frac{2}{15} და \frac{3}{4} წილადებად, რომელთა მნიშვნელია 60.
\frac{-8-45}{60}
რადგან -\frac{8}{60}-სა და \frac{45}{60}-ს აქვს იგივე მნიშვნელი, გამოაკელით მათი მრიცხველები.
-\frac{53}{60}
გამოაკელით 45 -8-ს -53-ის მისაღებად.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}