მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x^{2}+2x-3=5
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ x-1 x+3-ზე და დააჯგუფეთ მსგავსი წევრები.
x^{2}+2x-3-5=0
გამოაკელით 5 ორივე მხარეს.
x^{2}+2x-8=0
გამოაკელით 5 -3-ს -8-ის მისაღებად.
x=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 2-ით b და -8-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
აიყვანეთ კვადრატში 2.
x=\frac{-2±\sqrt{4+32}}{2}
გაამრავლეთ -4-ზე -8.
x=\frac{-2±\sqrt{36}}{2}
მიუმატეთ 4 32-ს.
x=\frac{-2±6}{2}
აიღეთ 36-ის კვადრატული ფესვი.
x=\frac{4}{2}
ახლა ამოხსენით განტოლება x=\frac{-2±6}{2} როცა ± პლიუსია. მიუმატეთ -2 6-ს.
x=2
გაყავით 4 2-ზე.
x=-\frac{8}{2}
ახლა ამოხსენით განტოლება x=\frac{-2±6}{2} როცა ± მინუსია. გამოაკელით 6 -2-ს.
x=-4
გაყავით -8 2-ზე.
x=2 x=-4
განტოლება ახლა ამოხსნილია.
x^{2}+2x-3=5
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ x-1 x+3-ზე და დააჯგუფეთ მსგავსი წევრები.
x^{2}+2x=5+3
დაამატეთ 3 ორივე მხარეს.
x^{2}+2x=8
შეკრიბეთ 5 და 3, რათა მიიღოთ 8.
x^{2}+2x+1^{2}=8+1^{2}
გაყავით 2, x წევრის კოეფიციენტი, 2-ზე, 1-ის მისაღებად. შემდეგ დაამატეთ 1-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+2x+1=8+1
აიყვანეთ კვადრატში 1.
x^{2}+2x+1=9
მიუმატეთ 8 1-ს.
\left(x+1\right)^{2}=9
დაშალეთ მამრავლებად x^{2}+2x+1. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+1=3 x+1=-3
გაამარტივეთ.
x=2 x=-4
გამოაკელით 1 განტოლების ორივე მხარეს.