მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\left(2x\right)^{2}-1=12x-10
განვიხილოთ \left(2x-1\right)\left(2x+1\right). გამრავლება შეიძლება გარდაიქმნას კვადრატების სხვაობად, შემდეგი წესის გამოყენებით: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. აიყვანეთ კვადრატში 1.
2^{2}x^{2}-1=12x-10
დაშალეთ \left(2x\right)^{2}.
4x^{2}-1=12x-10
გამოთვალეთ2-ის 2 ხარისხი და მიიღეთ 4.
4x^{2}-1-12x=-10
გამოაკელით 12x ორივე მხარეს.
4x^{2}-1-12x+10=0
დაამატეთ 10 ორივე მხარეს.
4x^{2}+9-12x=0
შეკრიბეთ -1 და 10, რათა მიიღოთ 9.
4x^{2}-12x+9=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 9}}{2\times 4}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 4-ით a, -12-ით b და 9-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 9}}{2\times 4}
აიყვანეთ კვადრატში -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\times 9}}{2\times 4}
გაამრავლეთ -4-ზე 4.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 4}
გაამრავლეთ -16-ზე 9.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 4}
მიუმატეთ 144 -144-ს.
x=-\frac{-12}{2\times 4}
აიღეთ 0-ის კვადრატული ფესვი.
x=\frac{12}{2\times 4}
-12-ის საპირისპიროა 12.
x=\frac{12}{8}
გაამრავლეთ 2-ზე 4.
x=\frac{3}{2}
შეამცირეთ წილადი \frac{12}{8} უმცირეს წევრებამდე გამოკლებით და 4-ის შეკვეცით.
\left(2x\right)^{2}-1=12x-10
განვიხილოთ \left(2x-1\right)\left(2x+1\right). გამრავლება შეიძლება გარდაიქმნას კვადრატების სხვაობად, შემდეგი წესის გამოყენებით: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. აიყვანეთ კვადრატში 1.
2^{2}x^{2}-1=12x-10
დაშალეთ \left(2x\right)^{2}.
4x^{2}-1=12x-10
გამოთვალეთ2-ის 2 ხარისხი და მიიღეთ 4.
4x^{2}-1-12x=-10
გამოაკელით 12x ორივე მხარეს.
4x^{2}-12x=-10+1
დაამატეთ 1 ორივე მხარეს.
4x^{2}-12x=-9
შეკრიბეთ -10 და 1, რათა მიიღოთ -9.
\frac{4x^{2}-12x}{4}=-\frac{9}{4}
ორივე მხარე გაყავით 4-ზე.
x^{2}+\left(-\frac{12}{4}\right)x=-\frac{9}{4}
4-ზე გაყოფა აუქმებს 4-ზე გამრავლებას.
x^{2}-3x=-\frac{9}{4}
გაყავით -12 4-ზე.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(-\frac{3}{2}\right)^{2}
გაყავით -3, x წევრის კოეფიციენტი, 2-ზე, -\frac{3}{2}-ის მისაღებად. შემდეგ დაამატეთ -\frac{3}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}-3x+\frac{9}{4}=\frac{-9+9}{4}
აიყვანეთ კვადრატში -\frac{3}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}-3x+\frac{9}{4}=0
მიუმატეთ -\frac{9}{4} \frac{9}{4}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
\left(x-\frac{3}{2}\right)^{2}=0
დაშალეთ მამრავლებად x^{2}-3x+\frac{9}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{0}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x-\frac{3}{2}=0 x-\frac{3}{2}=0
გაამარტივეთ.
x=\frac{3}{2} x=\frac{3}{2}
მიუმატეთ \frac{3}{2} განტოლების ორივე მხარეს.
x=\frac{3}{2}
განტოლება ახლა ამოხსნილია. ამონახსბები იგივეა.