მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image
დაშლა
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

y^{3}x^{2}\left(-3\right)^{-3}\left(x^{2}\right)^{-3}\left(y^{-3}\right)^{-3}\times \left(2x^{-2}y^{5}\right)^{2}
დაშალეთ \left(-3x^{2}y^{-3}\right)^{-3}.
y^{3}x^{2}\left(-3\right)^{-3}x^{-6}\left(y^{-3}\right)^{-3}\times \left(2x^{-2}y^{5}\right)^{2}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და -3 რომ მიიღოთ -6.
y^{3}x^{2}\left(-3\right)^{-3}x^{-6}y^{9}\times \left(2x^{-2}y^{5}\right)^{2}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ -3 და -3 რომ მიიღოთ 9.
y^{3}x^{2}\left(-\frac{1}{27}\right)x^{-6}y^{9}\times \left(2x^{-2}y^{5}\right)^{2}
გამოთვალეთ-3-ის -3 ხარისხი და მიიღეთ -\frac{1}{27}.
y^{3}x^{-4}\left(-\frac{1}{27}\right)y^{9}\times \left(2x^{-2}y^{5}\right)^{2}
იმავე ფუძის ჯერადი რიცხვების გასამრავლებლად, შეკრიბეთ მათი ექსპონენტები. შეკრიბეთ 2 და -6 რომ მიიღოთ -4.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times \left(2x^{-2}y^{5}\right)^{2}
იმავე ფუძის ჯერადი რიცხვების გასამრავლებლად, შეკრიბეთ მათი ექსპონენტები. შეკრიბეთ 3 და 9 რომ მიიღოთ 12.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times 2^{2}\left(x^{-2}\right)^{2}\left(y^{5}\right)^{2}
დაშალეთ \left(2x^{-2}y^{5}\right)^{2}.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times 2^{2}x^{-4}\left(y^{5}\right)^{2}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ -2 და 2 რომ მიიღოთ -4.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times 2^{2}x^{-4}y^{10}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 5 და 2 რომ მიიღოთ 10.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times 4x^{-4}y^{10}
გამოთვალეთ2-ის 2 ხარისხი და მიიღეთ 4.
y^{12}x^{-4}\left(-\frac{4}{27}\right)x^{-4}y^{10}
გადაამრავლეთ -\frac{1}{27} და 4, რათა მიიღოთ -\frac{4}{27}.
y^{12}x^{-8}\left(-\frac{4}{27}\right)y^{10}
იმავე ფუძის ჯერადი რიცხვების გასამრავლებლად, შეკრიბეთ მათი ექსპონენტები. შეკრიბეთ -4 და -4 რომ მიიღოთ -8.
y^{22}x^{-8}\left(-\frac{4}{27}\right)
იმავე ფუძის ჯერადი რიცხვების გასამრავლებლად, შეკრიბეთ მათი ექსპონენტები. შეკრიბეთ 12 და 10 რომ მიიღოთ 22.
y^{3}x^{2}\left(-3\right)^{-3}\left(x^{2}\right)^{-3}\left(y^{-3}\right)^{-3}\times \left(2x^{-2}y^{5}\right)^{2}
დაშალეთ \left(-3x^{2}y^{-3}\right)^{-3}.
y^{3}x^{2}\left(-3\right)^{-3}x^{-6}\left(y^{-3}\right)^{-3}\times \left(2x^{-2}y^{5}\right)^{2}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და -3 რომ მიიღოთ -6.
y^{3}x^{2}\left(-3\right)^{-3}x^{-6}y^{9}\times \left(2x^{-2}y^{5}\right)^{2}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ -3 და -3 რომ მიიღოთ 9.
y^{3}x^{2}\left(-\frac{1}{27}\right)x^{-6}y^{9}\times \left(2x^{-2}y^{5}\right)^{2}
გამოთვალეთ-3-ის -3 ხარისხი და მიიღეთ -\frac{1}{27}.
y^{3}x^{-4}\left(-\frac{1}{27}\right)y^{9}\times \left(2x^{-2}y^{5}\right)^{2}
იმავე ფუძის ჯერადი რიცხვების გასამრავლებლად, შეკრიბეთ მათი ექსპონენტები. შეკრიბეთ 2 და -6 რომ მიიღოთ -4.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times \left(2x^{-2}y^{5}\right)^{2}
იმავე ფუძის ჯერადი რიცხვების გასამრავლებლად, შეკრიბეთ მათი ექსპონენტები. შეკრიბეთ 3 და 9 რომ მიიღოთ 12.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times 2^{2}\left(x^{-2}\right)^{2}\left(y^{5}\right)^{2}
დაშალეთ \left(2x^{-2}y^{5}\right)^{2}.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times 2^{2}x^{-4}\left(y^{5}\right)^{2}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ -2 და 2 რომ მიიღოთ -4.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times 2^{2}x^{-4}y^{10}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 5 და 2 რომ მიიღოთ 10.
y^{12}x^{-4}\left(-\frac{1}{27}\right)\times 4x^{-4}y^{10}
გამოთვალეთ2-ის 2 ხარისხი და მიიღეთ 4.
y^{12}x^{-4}\left(-\frac{4}{27}\right)x^{-4}y^{10}
გადაამრავლეთ -\frac{1}{27} და 4, რათა მიიღოთ -\frac{4}{27}.
y^{12}x^{-8}\left(-\frac{4}{27}\right)y^{10}
იმავე ფუძის ჯერადი რიცხვების გასამრავლებლად, შეკრიბეთ მათი ექსპონენტები. შეკრიბეთ -4 და -4 რომ მიიღოთ -8.
y^{22}x^{-8}\left(-\frac{4}{27}\right)
იმავე ფუძის ჯერადი რიცხვების გასამრავლებლად, შეკრიბეთ მათი ექსპონენტები. შეკრიბეთ 12 და 10 რომ მიიღოთ 22.