ამოხსნა x-ისთვის
x=6
x=4
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
x^{2}-10x+25=1
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(x-5\right)^{2}-ის გასაშლელად.
x^{2}-10x+25-1=0
გამოაკელით 1 ორივე მხარეს.
x^{2}-10x+24=0
გამოაკელით 1 25-ს 24-ის მისაღებად.
a+b=-10 ab=24
განტოლების ამოსახსნელად მამრავლებად დაშალეთ x^{2}-10x+24 შემდეგი ფორმულის გამოყენებით: x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,-24 -2,-12 -3,-8 -4,-6
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b უარყოფითია, ორივე, a და b უარყოფითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-6 b=-4
ამონახსნი არის წყვილი, რომლის ჯამია -10.
\left(x-6\right)\left(x-4\right)
გადაწერეთ მამრავლებად დაშლილი ლოგიკური ფრაზა \left(x+a\right)\left(x+b\right) მიღებული მნიშვნელობების გამოყენებით.
x=6 x=4
განტოლების პასუხების მისაღებად ამოხსენით x-6=0 და x-4=0.
x^{2}-10x+25=1
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(x-5\right)^{2}-ის გასაშლელად.
x^{2}-10x+25-1=0
გამოაკელით 1 ორივე მხარეს.
x^{2}-10x+24=0
გამოაკელით 1 25-ს 24-ის მისაღებად.
a+b=-10 ab=1\times 24=24
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც x^{2}+ax+bx+24. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,-24 -2,-12 -3,-8 -4,-6
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b უარყოფითია, ორივე, a და b უარყოფითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-6 b=-4
ამონახსნი არის წყვილი, რომლის ჯამია -10.
\left(x^{2}-6x\right)+\left(-4x+24\right)
ხელახლა დაწერეთ x^{2}-10x+24, როგორც \left(x^{2}-6x\right)+\left(-4x+24\right).
x\left(x-6\right)-4\left(x-6\right)
x-ის პირველ, -4-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-6\right)\left(x-4\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-6 დისტრიბუციული თვისების გამოყენებით.
x=6 x=4
განტოლების პასუხების მისაღებად ამოხსენით x-6=0 და x-4=0.
x^{2}-10x+25=1
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(x-5\right)^{2}-ის გასაშლელად.
x^{2}-10x+25-1=0
გამოაკელით 1 ორივე მხარეს.
x^{2}-10x+24=0
გამოაკელით 1 25-ს 24-ის მისაღებად.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 24}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, -10-ით b და 24-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 24}}{2}
აიყვანეთ კვადრატში -10.
x=\frac{-\left(-10\right)±\sqrt{100-96}}{2}
გაამრავლეთ -4-ზე 24.
x=\frac{-\left(-10\right)±\sqrt{4}}{2}
მიუმატეთ 100 -96-ს.
x=\frac{-\left(-10\right)±2}{2}
აიღეთ 4-ის კვადრატული ფესვი.
x=\frac{10±2}{2}
-10-ის საპირისპიროა 10.
x=\frac{12}{2}
ახლა ამოხსენით განტოლება x=\frac{10±2}{2} როცა ± პლიუსია. მიუმატეთ 10 2-ს.
x=6
გაყავით 12 2-ზე.
x=\frac{8}{2}
ახლა ამოხსენით განტოლება x=\frac{10±2}{2} როცა ± მინუსია. გამოაკელით 2 10-ს.
x=4
გაყავით 8 2-ზე.
x=6 x=4
განტოლება ახლა ამოხსნილია.
\sqrt{\left(x-5\right)^{2}}=\sqrt{1}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x-5=1 x-5=-1
გაამარტივეთ.
x=6 x=4
მიუმატეთ 5 განტოლების ორივე მხარეს.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}