ამოხსნა x-ისთვის
x=-4
x=2
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(x-1\right)^{2}-ის გასაშლელად.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(x+2\right)^{2}-ის გასაშლელად.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
დააჯგუფეთ x^{2} და x^{2}, რათა მიიღოთ 2x^{2}.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
დააჯგუფეთ -2x და 4x, რათა მიიღოთ 2x.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
შეკრიბეთ 1 და 4, რათა მიიღოთ 5.
2x^{2}+2x+5-\left(x^{2}-9\right)=22
განვიხილოთ \left(x-3\right)\left(x+3\right). გამრავლება შეიძლება გარდაიქმნას კვადრატების სხვაობად, შემდეგი წესის გამოყენებით: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. აიყვანეთ კვადრატში 3.
2x^{2}+2x+5-x^{2}+9=22
x^{2}-9-ის საპირისპირო მნიშვნელობის პოვნისთვის, იპოვეთ იგი ყოველი წევრისთვის.
x^{2}+2x+5+9=22
დააჯგუფეთ 2x^{2} და -x^{2}, რათა მიიღოთ x^{2}.
x^{2}+2x+14=22
შეკრიბეთ 5 და 9, რათა მიიღოთ 14.
x^{2}+2x+14-22=0
გამოაკელით 22 ორივე მხარეს.
x^{2}+2x-8=0
გამოაკელით 22 14-ს -8-ის მისაღებად.
a+b=2 ab=-8
განტოლების ამოსახსნელად მამრავლებად დაშალეთ x^{2}+2x-8 შემდეგი ფორმულის გამოყენებით: x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,8 -2,4
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -8.
-1+8=7 -2+4=2
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-2 b=4
ამონახსნი არის წყვილი, რომლის ჯამია 2.
\left(x-2\right)\left(x+4\right)
გადაწერეთ მამრავლებად დაშლილი ლოგიკური ფრაზა \left(x+a\right)\left(x+b\right) მიღებული მნიშვნელობების გამოყენებით.
x=2 x=-4
განტოლების პასუხების მისაღებად ამოხსენით x-2=0 და x+4=0.
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(x-1\right)^{2}-ის გასაშლელად.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(x+2\right)^{2}-ის გასაშლელად.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
დააჯგუფეთ x^{2} და x^{2}, რათა მიიღოთ 2x^{2}.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
დააჯგუფეთ -2x და 4x, რათა მიიღოთ 2x.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
შეკრიბეთ 1 და 4, რათა მიიღოთ 5.
2x^{2}+2x+5-\left(x^{2}-9\right)=22
განვიხილოთ \left(x-3\right)\left(x+3\right). გამრავლება შეიძლება გარდაიქმნას კვადრატების სხვაობად, შემდეგი წესის გამოყენებით: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. აიყვანეთ კვადრატში 3.
2x^{2}+2x+5-x^{2}+9=22
x^{2}-9-ის საპირისპირო მნიშვნელობის პოვნისთვის, იპოვეთ იგი ყოველი წევრისთვის.
x^{2}+2x+5+9=22
დააჯგუფეთ 2x^{2} და -x^{2}, რათა მიიღოთ x^{2}.
x^{2}+2x+14=22
შეკრიბეთ 5 და 9, რათა მიიღოთ 14.
x^{2}+2x+14-22=0
გამოაკელით 22 ორივე მხარეს.
x^{2}+2x-8=0
გამოაკელით 22 14-ს -8-ის მისაღებად.
a+b=2 ab=1\left(-8\right)=-8
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც x^{2}+ax+bx-8. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,8 -2,4
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -8.
-1+8=7 -2+4=2
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-2 b=4
ამონახსნი არის წყვილი, რომლის ჯამია 2.
\left(x^{2}-2x\right)+\left(4x-8\right)
ხელახლა დაწერეთ x^{2}+2x-8, როგორც \left(x^{2}-2x\right)+\left(4x-8\right).
x\left(x-2\right)+4\left(x-2\right)
x-ის პირველ, 4-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-2\right)\left(x+4\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-2 დისტრიბუციული თვისების გამოყენებით.
x=2 x=-4
განტოლების პასუხების მისაღებად ამოხსენით x-2=0 და x+4=0.
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(x-1\right)^{2}-ის გასაშლელად.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(x+2\right)^{2}-ის გასაშლელად.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
დააჯგუფეთ x^{2} და x^{2}, რათა მიიღოთ 2x^{2}.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
დააჯგუფეთ -2x და 4x, რათა მიიღოთ 2x.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
შეკრიბეთ 1 და 4, რათა მიიღოთ 5.
2x^{2}+2x+5-\left(x^{2}-9\right)=22
განვიხილოთ \left(x-3\right)\left(x+3\right). გამრავლება შეიძლება გარდაიქმნას კვადრატების სხვაობად, შემდეგი წესის გამოყენებით: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. აიყვანეთ კვადრატში 3.
2x^{2}+2x+5-x^{2}+9=22
x^{2}-9-ის საპირისპირო მნიშვნელობის პოვნისთვის, იპოვეთ იგი ყოველი წევრისთვის.
x^{2}+2x+5+9=22
დააჯგუფეთ 2x^{2} და -x^{2}, რათა მიიღოთ x^{2}.
x^{2}+2x+14=22
შეკრიბეთ 5 და 9, რათა მიიღოთ 14.
x^{2}+2x+14-22=0
გამოაკელით 22 ორივე მხარეს.
x^{2}+2x-8=0
გამოაკელით 22 14-ს -8-ის მისაღებად.
x=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 2-ით b და -8-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
აიყვანეთ კვადრატში 2.
x=\frac{-2±\sqrt{4+32}}{2}
გაამრავლეთ -4-ზე -8.
x=\frac{-2±\sqrt{36}}{2}
მიუმატეთ 4 32-ს.
x=\frac{-2±6}{2}
აიღეთ 36-ის კვადრატული ფესვი.
x=\frac{4}{2}
ახლა ამოხსენით განტოლება x=\frac{-2±6}{2} როცა ± პლიუსია. მიუმატეთ -2 6-ს.
x=2
გაყავით 4 2-ზე.
x=-\frac{8}{2}
ახლა ამოხსენით განტოლება x=\frac{-2±6}{2} როცა ± მინუსია. გამოაკელით 6 -2-ს.
x=-4
გაყავით -8 2-ზე.
x=2 x=-4
განტოლება ახლა ამოხსნილია.
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(x-1\right)^{2}-ის გასაშლელად.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(x+2\right)^{2}-ის გასაშლელად.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
დააჯგუფეთ x^{2} და x^{2}, რათა მიიღოთ 2x^{2}.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
დააჯგუფეთ -2x და 4x, რათა მიიღოთ 2x.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
შეკრიბეთ 1 და 4, რათა მიიღოთ 5.
2x^{2}+2x+5-\left(x^{2}-9\right)=22
განვიხილოთ \left(x-3\right)\left(x+3\right). გამრავლება შეიძლება გარდაიქმნას კვადრატების სხვაობად, შემდეგი წესის გამოყენებით: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. აიყვანეთ კვადრატში 3.
2x^{2}+2x+5-x^{2}+9=22
x^{2}-9-ის საპირისპირო მნიშვნელობის პოვნისთვის, იპოვეთ იგი ყოველი წევრისთვის.
x^{2}+2x+5+9=22
დააჯგუფეთ 2x^{2} და -x^{2}, რათა მიიღოთ x^{2}.
x^{2}+2x+14=22
შეკრიბეთ 5 და 9, რათა მიიღოთ 14.
x^{2}+2x=22-14
გამოაკელით 14 ორივე მხარეს.
x^{2}+2x=8
გამოაკელით 14 22-ს 8-ის მისაღებად.
x^{2}+2x+1^{2}=8+1^{2}
გაყავით 2, x წევრის კოეფიციენტი, 2-ზე, 1-ის მისაღებად. შემდეგ დაამატეთ 1-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+2x+1=8+1
აიყვანეთ კვადრატში 1.
x^{2}+2x+1=9
მიუმატეთ 8 1-ს.
\left(x+1\right)^{2}=9
დაშალეთ მამრავლებად x^{2}+2x+1. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+1=3 x+1=-3
გაამარტივეთ.
x=2 x=-4
გამოაკელით 1 განტოლების ორივე მხარეს.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}