ამოხსნა x-ისთვის (complex solution)
x=-3\sqrt{3}i-3\approx -3-5.196152423i
x=6
x=-3+3\sqrt{3}i\approx -3+5.196152423i
ამოხსნა x-ისთვის
x=6
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
x^{3}-1=43\times 5
ორივე მხარე გაამრავლეთ 5-ზე.
x^{3}-1=215
გადაამრავლეთ 43 და 5, რათა მიიღოთ 215.
x^{3}-1-215=0
გამოაკელით 215 ორივე მხარეს.
x^{3}-216=0
გამოაკელით 215 -1-ს -216-ის მისაღებად.
±216,±108,±72,±54,±36,±27,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს-216 და q ყოფს უფროს კოეფიციენტს 1. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
x=6
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
x^{2}+6x+36=0
ბეზუს თეორემის მიხედვით, x-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით x^{3}-216 x-6-ზე x^{2}+6x+36-ის მისაღებად. ამოხსენით განტოლება, სადაც შედეგი უდრის 0.
x=\frac{-6±\sqrt{6^{2}-4\times 1\times 36}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 1 a-თვის, 6 b-თვის და 36 c-თვის კვადრატულ ფორმულაში.
x=\frac{-6±\sqrt{-108}}{2}
შეასრულეთ გამოთვლები.
x=-3i\sqrt{3}-3 x=-3+3i\sqrt{3}
ამოხსენით განტოლება x^{2}+6x+36=0, როცა ± არის პლუსი და როცა ± არის მინუსი.
x=6 x=-3i\sqrt{3}-3 x=-3+3i\sqrt{3}
ჩამოთვალეთ ყველა ნაპოვნი ამოხსნა.
x^{3}-1=43\times 5
ორივე მხარე გაამრავლეთ 5-ზე.
x^{3}-1=215
გადაამრავლეთ 43 და 5, რათა მიიღოთ 215.
x^{3}-1-215=0
გამოაკელით 215 ორივე მხარეს.
x^{3}-216=0
გამოაკელით 215 -1-ს -216-ის მისაღებად.
±216,±108,±72,±54,±36,±27,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს-216 და q ყოფს უფროს კოეფიციენტს 1. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
x=6
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
x^{2}+6x+36=0
ბეზუს თეორემის მიხედვით, x-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით x^{3}-216 x-6-ზე x^{2}+6x+36-ის მისაღებად. ამოხსენით განტოლება, სადაც შედეგი უდრის 0.
x=\frac{-6±\sqrt{6^{2}-4\times 1\times 36}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 1 a-თვის, 6 b-თვის და 36 c-თვის კვადრატულ ფორმულაში.
x=\frac{-6±\sqrt{-108}}{2}
შეასრულეთ გამოთვლები.
x\in \emptyset
ვინაიდან უარყოფითი რიცხვის კვადრატული ფესვი არ არის განსაზღვრული რეალურ ველში, ამონახსნი არ არსებობს.
x=6
ჩამოთვალეთ ყველა ნაპოვნი ამოხსნა.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}