შეფასება
9\left(x-y\right)^{2}+12x-12y+16
დაშლა
9x^{2}-18xy+12x+9y^{2}-12y+16
გაზიარება
კოპირებულია ბუფერში
16+12\left(x-y\right)+9\left(x-y\right)^{2}
გადაამრავლეთ 4 და 4, რათა მიიღოთ 16.
16+12x-12y+9\left(x-y\right)^{2}
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 12 x-y-ზე.
16+12x-12y+9\left(x^{2}-2xy+y^{2}\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(x-y\right)^{2}-ის გასაშლელად.
16+12x-12y+9x^{2}-18xy+9y^{2}
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 9 x^{2}-2xy+y^{2}-ზე.
16+12\left(x-y\right)+9\left(x-y\right)^{2}
გადაამრავლეთ 4 და 4, რათა მიიღოთ 16.
16+12x-12y+9\left(x-y\right)^{2}
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 12 x-y-ზე.
16+12x-12y+9\left(x^{2}-2xy+y^{2}\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(x-y\right)^{2}-ის გასაშლელად.
16+12x-12y+9x^{2}-18xy+9y^{2}
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 9 x^{2}-2xy+y^{2}-ზე.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}