მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image
დიფერენცირება t-ის მიმართ
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

32^{\frac{6}{5}}\left(t^{2}\right)^{\frac{6}{5}}
დაშალეთ \left(32t^{2}\right)^{\frac{6}{5}}.
32^{\frac{6}{5}}t^{\frac{12}{5}}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და \frac{6}{5} რომ მიიღოთ \frac{12}{5}.
64t^{\frac{12}{5}}
გამოთვალეთ\frac{6}{5}-ის 32 ხარისხი და მიიღეთ 64.
\frac{6}{5}\times \left(32t^{2}\right)^{\frac{6}{5}-1}\frac{\mathrm{d}}{\mathrm{d}t}(32t^{2})
თუ F წარმოადგენს ორი დიფერენცირებული ფუნქციის f\left(u\right) და u=g\left(x\right) კომპოზიცია, ანუ, თუ F\left(x\right)=f\left(g\left(x\right)\right), მაშინ F-ის დერივატივი არის f-ის დერივატივი u-ზე გამრავლებული g-ის დერივატივის მიმართ x-ის მიმართ, ანუ, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{6}{5}\sqrt[5]{32t^{2}}\times 2\times 32t^{2-1}
პოლინომის დერივატივი არის მისი წევრების დერივატივების ჯამი. ნებისმიერი კონსტანტის დერივატივი არის 0. ax^{n}-ის დერივატივი არის nax^{n-1}.
\frac{384}{5}t^{1}\sqrt[5]{32t^{2}}
გაამარტივეთ.
\frac{384}{5}t\sqrt[5]{32t^{2}}
ნებისმიერი წევრისთვის t, t^{1}=t.