შეფასება
-6\sqrt{6}-6\approx -20.696938457
მამრავლი
6 {(-\sqrt{6} - 1)} = -20.696938457
ვიქტორინა
Arithmetic
5 მსგავსი პრობლემები:
( 3 \sqrt { 2 } + 2 \sqrt { 3 } ) ( 3 \sqrt { 2 } - 4 \sqrt { 3 } )
გაზიარება
კოპირებულია ბუფერში
9\left(\sqrt{2}\right)^{2}-12\sqrt{3}\sqrt{2}+6\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}
გამოიყენეთ დისტრიბუტულობის თვისება და გაამრავლეთ 3\sqrt{2}+2\sqrt{3}-ის თითოეული წევრი 3\sqrt{2}-4\sqrt{3}-ის თითოეულ წევრზე.
9\times 2-12\sqrt{3}\sqrt{2}+6\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}
\sqrt{2}-ის კვადრატია 2.
18-12\sqrt{3}\sqrt{2}+6\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}
გადაამრავლეთ 9 და 2, რათა მიიღოთ 18.
18-12\sqrt{6}+6\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}
\sqrt{3}-სა და \sqrt{2}-ის გასამრავლებლად გაამრავლეთ კვადრატული ფესვის რიცხვები.
18-12\sqrt{6}+6\sqrt{6}-8\left(\sqrt{3}\right)^{2}
\sqrt{3}-სა და \sqrt{2}-ის გასამრავლებლად გაამრავლეთ კვადრატული ფესვის რიცხვები.
18-6\sqrt{6}-8\left(\sqrt{3}\right)^{2}
დააჯგუფეთ -12\sqrt{6} და 6\sqrt{6}, რათა მიიღოთ -6\sqrt{6}.
18-6\sqrt{6}-8\times 3
\sqrt{3}-ის კვადრატია 3.
18-6\sqrt{6}-24
გადაამრავლეთ -8 და 3, რათა მიიღოთ -24.
-6-6\sqrt{6}
გამოაკელით 24 18-ს -6-ის მისაღებად.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}