მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image
დაშლა
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
გამოსახულებების მიმატებისთვის ან გამოკლებისთვის, დაშალეთ ისინი, რათა გახადოთ მათი მნიშვნელი ერთნაირი. გაამრავლეთ 2x^{2}-ზე \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
რადგან \frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-სა და \frac{1}{\left(x-2\right)\left(x+1\right)}-ს აქვს იგივე მნიშვნელი, გამოაკელით მათი მრიცხველები.
\left(\frac{2x^{4}+2x^{3}-4x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
შეასრულეთ გამრავლება 2x^{2}\left(x-2\right)\left(x+1\right)-1-ში.
\left(\frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
მსგავსი წევრების გაერთიანება 2x^{4}+2x^{3}-4x^{3}-4x^{2}-1-ში.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}-8\left(2x^{2}-1\right)+7
ჯერადით \frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}-ის გაზრდისთვის, გაზარდეთ ორივე, მრიცხველი და მნიშვნელი, ჯერადით და შემდეგ გაყავით.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-8\left(2x^{2}-1\right)+7
დაშალეთ \left(\left(x-2\right)\left(x+1\right)\right)^{2}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+7
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ -8 2x^{2}-1-ზე.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+15
შეკრიბეთ 8 და 7, რათა მიიღოთ 15.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}+\frac{\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
გამოსახულებების მიმატებისთვის ან გამოკლებისთვის, დაშალეთ ისინი, რათა გახადოთ მათი მნიშვნელი ერთნაირი. გაამრავლეთ -16x^{2}+15-ზე \frac{\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
რადგან \frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-სა და \frac{\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-ს აქვს იგივე მნიშვნელი, შეკრიბეთ მათი მრიცხველები.
\frac{4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-16x^{6}+32x^{5}+48x^{4}-64x^{3}-64x^{2}+15x^{4}-30x^{3}-45x^{2}+60x+60}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
შეასრულეთ გამრავლება \left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}-ში.
\frac{4x^{8}-8x^{7}-28x^{6}+75x^{4}+48x^{5}-90x^{3}-101x^{2}+61+60x}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
მსგავსი წევრების გაერთიანება 4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-16x^{6}+32x^{5}+48x^{4}-64x^{3}-64x^{2}+15x^{4}-30x^{3}-45x^{2}+60x+60-ში.
\frac{4x^{8}-8x^{7}-28x^{6}+75x^{4}+48x^{5}-90x^{3}-101x^{2}+61+60x}{x^{4}-2x^{3}-3x^{2}+4x+4}
დაშალეთ \left(x-2\right)^{2}\left(x+1\right)^{2}.
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
გამოსახულებების მიმატებისთვის ან გამოკლებისთვის, დაშალეთ ისინი, რათა გახადოთ მათი მნიშვნელი ერთნაირი. გაამრავლეთ 2x^{2}-ზე \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
რადგან \frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-სა და \frac{1}{\left(x-2\right)\left(x+1\right)}-ს აქვს იგივე მნიშვნელი, გამოაკელით მათი მრიცხველები.
\left(\frac{2x^{4}+2x^{3}-4x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
შეასრულეთ გამრავლება 2x^{2}\left(x-2\right)\left(x+1\right)-1-ში.
\left(\frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
მსგავსი წევრების გაერთიანება 2x^{4}+2x^{3}-4x^{3}-4x^{2}-1-ში.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}-8\left(2x^{2}-1\right)+7
ჯერადით \frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}-ის გაზრდისთვის, გაზარდეთ ორივე, მრიცხველი და მნიშვნელი, ჯერადით და შემდეგ გაყავით.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-8\left(2x^{2}-1\right)+7
დაშალეთ \left(\left(x-2\right)\left(x+1\right)\right)^{2}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+7
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ -8 2x^{2}-1-ზე.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+15
შეკრიბეთ 8 და 7, რათა მიიღოთ 15.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}+\frac{\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
გამოსახულებების მიმატებისთვის ან გამოკლებისთვის, დაშალეთ ისინი, რათა გახადოთ მათი მნიშვნელი ერთნაირი. გაამრავლეთ -16x^{2}+15-ზე \frac{\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
რადგან \frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-სა და \frac{\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-ს აქვს იგივე მნიშვნელი, შეკრიბეთ მათი მრიცხველები.
\frac{4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-16x^{6}+32x^{5}+48x^{4}-64x^{3}-64x^{2}+15x^{4}-30x^{3}-45x^{2}+60x+60}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
შეასრულეთ გამრავლება \left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}-ში.
\frac{4x^{8}-8x^{7}-28x^{6}+75x^{4}+48x^{5}-90x^{3}-101x^{2}+61+60x}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
მსგავსი წევრების გაერთიანება 4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-16x^{6}+32x^{5}+48x^{4}-64x^{3}-64x^{2}+15x^{4}-30x^{3}-45x^{2}+60x+60-ში.
\frac{4x^{8}-8x^{7}-28x^{6}+75x^{4}+48x^{5}-90x^{3}-101x^{2}+61+60x}{x^{4}-2x^{3}-3x^{2}+4x+4}
დაშალეთ \left(x-2\right)^{2}\left(x+1\right)^{2}.