შეფასება
\frac{27}{4}i=6.75i
ნამდვილი ნაწილი
0
გაზიარება
კოპირებულია ბუფერში
\left(\frac{3}{2}\right)^{2}\left(\sqrt{3i}\right)^{2}
დაშალეთ \left(\frac{3}{2}\sqrt{3i}\right)^{2}.
\frac{9}{4}\left(\sqrt{3i}\right)^{2}
გამოთვალეთ2-ის \frac{3}{2} ხარისხი და მიიღეთ \frac{9}{4}.
\frac{9}{4}\times \left(3i\right)
\sqrt{3i}-ის კვადრატია 3i.
\frac{27}{4}i
გადაამრავლეთ \frac{9}{4} და 3i, რათა მიიღოთ \frac{27}{4}i.
Re(\left(\frac{3}{2}\right)^{2}\left(\sqrt{3i}\right)^{2})
დაშალეთ \left(\frac{3}{2}\sqrt{3i}\right)^{2}.
Re(\frac{9}{4}\left(\sqrt{3i}\right)^{2})
გამოთვალეთ2-ის \frac{3}{2} ხარისხი და მიიღეთ \frac{9}{4}.
Re(\frac{9}{4}\times \left(3i\right))
\sqrt{3i}-ის კვადრატია 3i.
Re(\frac{27}{4}i)
გადაამრავლეთ \frac{9}{4} და 3i, რათა მიიღოთ \frac{27}{4}i.
0
\frac{27}{4}i-ის რეალური ნაწილი არის 0.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}