შეფასება
\frac{1}{16r^{2}}
დიფერენცირება r-ის მიმართ
-\frac{1}{8r^{3}}
ვიქტორინა
Algebra
5 მსგავსი პრობლემები:
( \frac { - r ^ { 4 } } { 64 r ^ { 7 } } ) ^ { \frac { 2 } { 3 } }
გაზიარება
კოპირებულია ბუფერში
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{\left(64r^{7}\right)^{\frac{2}{3}}}
ჯერადით \frac{-r^{4}}{64r^{7}}-ის გაზრდისთვის, გაზარდეთ ორივე, მრიცხველი და მნიშვნელი, ჯერადით და შემდეგ გაყავით.
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{64^{\frac{2}{3}}\left(r^{7}\right)^{\frac{2}{3}}}
დაშალეთ \left(64r^{7}\right)^{\frac{2}{3}}.
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{64^{\frac{2}{3}}r^{\frac{14}{3}}}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 7 და \frac{2}{3} რომ მიიღოთ \frac{14}{3}.
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{16r^{\frac{14}{3}}}
გამოთვალეთ\frac{2}{3}-ის 64 ხარისხი და მიიღეთ 16.
\frac{\left(-1\right)^{\frac{2}{3}}\left(r^{4}\right)^{\frac{2}{3}}}{16r^{\frac{14}{3}}}
დაშალეთ \left(-r^{4}\right)^{\frac{2}{3}}.
\frac{\left(-1\right)^{\frac{2}{3}}r^{\frac{8}{3}}}{16r^{\frac{14}{3}}}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 4 და \frac{2}{3} რომ მიიღოთ \frac{8}{3}.
\frac{1r^{\frac{8}{3}}}{16r^{\frac{14}{3}}}
გამოთვალეთ\frac{2}{3}-ის -1 ხარისხი და მიიღეთ 1.
\frac{1}{16r^{2}}
გააბათილეთ r^{\frac{8}{3}} როგორც მრიცხველში, ასევე მნიშვნელში.
\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\frac{\mathrm{d}}{\mathrm{d}r}(\frac{-r^{4}}{64r^{7}})
თუ F წარმოადგენს ორი დიფერენცირებული ფუნქციის f\left(u\right) და u=g\left(x\right) კომპოზიცია, ანუ, თუ F\left(x\right)=f\left(g\left(x\right)\right), მაშინ F-ის დერივატივი არის f-ის დერივატივი u-ზე გამრავლებული g-ის დერივატივის მიმართ x-ის მიმართ, ანუ, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\left(64r^{7}\frac{\mathrm{d}}{\mathrm{d}r}(-r^{4})-\left(-r^{4}\frac{\mathrm{d}}{\mathrm{d}r}(64r^{7})\right)\right)}{\left(64r^{7}\right)^{2}}
ნებისმიერი ორი დიფერენცირებული ფუნქციისთვის,ორი ფუნქციის განაყოფის დერივატივი არის მნიშვნელზე გამრავლებული მრიცხველის დერივატივი მინუს მრიცხველზე გამრავლებული მნიშვნელის დერივატივი და ყველაფერი ეს გაყოფილი მნიშვნელის კვადრატზე.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\left(64r^{7}\times 4\left(-1\right)r^{4-1}-\left(-r^{4}\times 7\times 64r^{7-1}\right)\right)}{\left(64r^{7}\right)^{2}}
პოლინომის დერივატივი არის მისი წევრების დერივატივების ჯამი. ნებისმიერი კონსტანტის დერივატივი არის 0. ax^{n}-ის დერივატივი არის nax^{n-1}.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{7}r^{3}-\left(-r^{4}\times 7\times 64r^{7-1}\right)\right)}{\left(64r^{7}\right)^{2}}
გაამრავლეთ 64r^{7}-ზე 4\left(-1\right)r^{4-1}.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{10}-\left(-448r^{4}r^{6}\right)\right)}{\left(64r^{7}\right)^{2}}
გაამრავლეთ -r^{4}-ზე 7\times 64r^{7-1}.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{10}-\left(-448r^{10}\right)\right)}{\left(64r^{7}\right)^{2}}
გაამარტივეთ.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}