მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის (complex solution)
Tick mark Image
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა
ვიქტორინა
Polynomial

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x^{3}+3x=4
დაამატეთ 3x ორივე მხარეს.
x^{3}+3x-4=0
გამოაკელით 4 ორივე მხარეს.
±4,±2,±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს-4 და q ყოფს უფროს კოეფიციენტს 1. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
x=1
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
x^{2}+x+4=0
ბეზუს თეორემის მიხედვით, x-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით x^{3}+3x-4 x-1-ზე x^{2}+x+4-ის მისაღებად. ამოხსენით განტოლება, სადაც შედეგი უდრის 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 4}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 1 a-თვის, 1 b-თვის და 4 c-თვის კვადრატულ ფორმულაში.
x=\frac{-1±\sqrt{-15}}{2}
შეასრულეთ გამოთვლები.
x=\frac{-\sqrt{15}i-1}{2} x=\frac{-1+\sqrt{15}i}{2}
ამოხსენით განტოლება x^{2}+x+4=0, როცა ± არის პლუსი და როცა ± არის მინუსი.
x=1 x=\frac{-\sqrt{15}i-1}{2} x=\frac{-1+\sqrt{15}i}{2}
ჩამოთვალეთ ყველა ნაპოვნი ამოხსნა.
x^{3}+3x=4
დაამატეთ 3x ორივე მხარეს.
x^{3}+3x-4=0
გამოაკელით 4 ორივე მხარეს.
±4,±2,±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს-4 და q ყოფს უფროს კოეფიციენტს 1. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
x=1
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
x^{2}+x+4=0
ბეზუს თეორემის მიხედვით, x-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით x^{3}+3x-4 x-1-ზე x^{2}+x+4-ის მისაღებად. ამოხსენით განტოლება, სადაც შედეგი უდრის 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 4}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 1 a-თვის, 1 b-თვის და 4 c-თვის კვადრატულ ფორმულაში.
x=\frac{-1±\sqrt{-15}}{2}
შეასრულეთ გამოთვლები.
x\in \emptyset
ვინაიდან უარყოფითი რიცხვის კვადრატული ფესვი არ არის განსაზღვრული რეალურ ველში, ამონახსნი არ არსებობს.
x=1
ჩამოთვალეთ ყველა ნაპოვნი ამოხსნა.