მამრავლი
\left(x-8\right)\left(x+6\right)
შეფასება
\left(x-8\right)\left(x+6\right)
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
a+b=-2 ab=1\left(-48\right)=-48
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც x^{2}+ax+bx-48. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,-48 2,-24 3,-16 4,-12 6,-8
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b უარყოფითია, უარყოფით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე დადებით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -48.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-8 b=6
ამონახსნი არის წყვილი, რომლის ჯამია -2.
\left(x^{2}-8x\right)+\left(6x-48\right)
ხელახლა დაწერეთ x^{2}-2x-48, როგორც \left(x^{2}-8x\right)+\left(6x-48\right).
x\left(x-8\right)+6\left(x-8\right)
x-ის პირველ, 6-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-8\right)\left(x+6\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-8 დისტრიბუციული თვისების გამოყენებით.
x^{2}-2x-48=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-48\right)}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-48\right)}}{2}
აიყვანეთ კვადრატში -2.
x=\frac{-\left(-2\right)±\sqrt{4+192}}{2}
გაამრავლეთ -4-ზე -48.
x=\frac{-\left(-2\right)±\sqrt{196}}{2}
მიუმატეთ 4 192-ს.
x=\frac{-\left(-2\right)±14}{2}
აიღეთ 196-ის კვადრატული ფესვი.
x=\frac{2±14}{2}
-2-ის საპირისპიროა 2.
x=\frac{16}{2}
ახლა ამოხსენით განტოლება x=\frac{2±14}{2} როცა ± პლიუსია. მიუმატეთ 2 14-ს.
x=8
გაყავით 16 2-ზე.
x=-\frac{12}{2}
ახლა ამოხსენით განტოლება x=\frac{2±14}{2} როცა ± მინუსია. გამოაკელით 14 2-ს.
x=-6
გაყავით -12 2-ზე.
x^{2}-2x-48=\left(x-8\right)\left(x-\left(-6\right)\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით 8 x_{1}-ისთვის და -6 x_{2}-ისთვის.
x^{2}-2x-48=\left(x-8\right)\left(x+6\right)
გაამარტივეთ გამოსახულება p-\left(-q\right) p+q-მდე.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}