მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=1 ab=1\left(-6\right)=-6
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც x^{2}+ax+bx-6. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,6 -2,3
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -6.
-1+6=5 -2+3=1
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-2 b=3
ამონახსნი არის წყვილი, რომლის ჯამია 1.
\left(x^{2}-2x\right)+\left(3x-6\right)
ხელახლა დაწერეთ x^{2}+x-6, როგორც \left(x^{2}-2x\right)+\left(3x-6\right).
x\left(x-2\right)+3\left(x-2\right)
x-ის პირველ, 3-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-2\right)\left(x+3\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-2 დისტრიბუციული თვისების გამოყენებით.
x^{2}+x-6=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-1±\sqrt{1^{2}-4\left(-6\right)}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-1±\sqrt{1-4\left(-6\right)}}{2}
აიყვანეთ კვადრატში 1.
x=\frac{-1±\sqrt{1+24}}{2}
გაამრავლეთ -4-ზე -6.
x=\frac{-1±\sqrt{25}}{2}
მიუმატეთ 1 24-ს.
x=\frac{-1±5}{2}
აიღეთ 25-ის კვადრატული ფესვი.
x=\frac{4}{2}
ახლა ამოხსენით განტოლება x=\frac{-1±5}{2} როცა ± პლიუსია. მიუმატეთ -1 5-ს.
x=2
გაყავით 4 2-ზე.
x=-\frac{6}{2}
ახლა ამოხსენით განტოლება x=\frac{-1±5}{2} როცა ± მინუსია. გამოაკელით 5 -1-ს.
x=-3
გაყავით -6 2-ზე.
x^{2}+x-6=\left(x-2\right)\left(x-\left(-3\right)\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით 2 x_{1}-ისთვის და -3 x_{2}-ისთვის.
x^{2}+x-6=\left(x-2\right)\left(x+3\right)
გაამარტივეთ გამოსახულება p-\left(-q\right) p+q-მდე.