მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=7 ab=12
განტოლების ამოსახსნელად მამრავლებად დაშალეთ x^{2}+7x+12 შემდეგი ფორმულის გამოყენებით: x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,12 2,6 3,4
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b დადებითია, ორივე, a და b დადებითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 12.
1+12=13 2+6=8 3+4=7
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=3 b=4
ამონახსნი არის წყვილი, რომლის ჯამია 7.
\left(x+3\right)\left(x+4\right)
გადაწერეთ მამრავლებად დაშლილი ლოგიკური ფრაზა \left(x+a\right)\left(x+b\right) მიღებული მნიშვნელობების გამოყენებით.
x=-3 x=-4
განტოლების პასუხების მისაღებად ამოხსენით x+3=0 და x+4=0.
a+b=7 ab=1\times 12=12
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც x^{2}+ax+bx+12. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,12 2,6 3,4
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b დადებითია, ორივე, a და b დადებითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 12.
1+12=13 2+6=8 3+4=7
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=3 b=4
ამონახსნი არის წყვილი, რომლის ჯამია 7.
\left(x^{2}+3x\right)+\left(4x+12\right)
ხელახლა დაწერეთ x^{2}+7x+12, როგორც \left(x^{2}+3x\right)+\left(4x+12\right).
x\left(x+3\right)+4\left(x+3\right)
x-ის პირველ, 4-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x+3\right)\left(x+4\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x+3 დისტრიბუციული თვისების გამოყენებით.
x=-3 x=-4
განტოლების პასუხების მისაღებად ამოხსენით x+3=0 და x+4=0.
x^{2}+7x+12=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-7±\sqrt{7^{2}-4\times 12}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 7-ით b და 12-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 12}}{2}
აიყვანეთ კვადრატში 7.
x=\frac{-7±\sqrt{49-48}}{2}
გაამრავლეთ -4-ზე 12.
x=\frac{-7±\sqrt{1}}{2}
მიუმატეთ 49 -48-ს.
x=\frac{-7±1}{2}
აიღეთ 1-ის კვადრატული ფესვი.
x=-\frac{6}{2}
ახლა ამოხსენით განტოლება x=\frac{-7±1}{2} როცა ± პლიუსია. მიუმატეთ -7 1-ს.
x=-3
გაყავით -6 2-ზე.
x=-\frac{8}{2}
ახლა ამოხსენით განტოლება x=\frac{-7±1}{2} როცა ± მინუსია. გამოაკელით 1 -7-ს.
x=-4
გაყავით -8 2-ზე.
x=-3 x=-4
განტოლება ახლა ამოხსნილია.
x^{2}+7x+12=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
x^{2}+7x+12-12=-12
გამოაკელით 12 განტოლების ორივე მხარეს.
x^{2}+7x=-12
12-იდან იმავე რიცხვის გამოკლების შედეგია 0.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-12+\left(\frac{7}{2}\right)^{2}
გაყავით 7, x წევრის კოეფიციენტი, 2-ზე, \frac{7}{2}-ის მისაღებად. შემდეგ დაამატეთ \frac{7}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+7x+\frac{49}{4}=-12+\frac{49}{4}
აიყვანეთ კვადრატში \frac{7}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}+7x+\frac{49}{4}=\frac{1}{4}
მიუმატეთ -12 \frac{49}{4}-ს.
\left(x+\frac{7}{2}\right)^{2}=\frac{1}{4}
დაშალეთ მამრავლებად x^{2}+7x+\frac{49}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+\frac{7}{2}=\frac{1}{2} x+\frac{7}{2}=-\frac{1}{2}
გაამარტივეთ.
x=-3 x=-4
გამოაკელით \frac{7}{2} განტოლების ორივე მხარეს.