მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x\left(x+4\right)=0
ფრჩხილებს გარეთ გაიტანეთ x.
x=0 x=-4
განტოლების პასუხების მისაღებად ამოხსენით x=0 და x+4=0.
x^{2}+4x=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-4±\sqrt{4^{2}}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 4-ით b და 0-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±4}{2}
აიღეთ 4^{2}-ის კვადრატული ფესვი.
x=\frac{0}{2}
ახლა ამოხსენით განტოლება x=\frac{-4±4}{2} როცა ± პლიუსია. მიუმატეთ -4 4-ს.
x=0
გაყავით 0 2-ზე.
x=-\frac{8}{2}
ახლა ამოხსენით განტოლება x=\frac{-4±4}{2} როცა ± მინუსია. გამოაკელით 4 -4-ს.
x=-4
გაყავით -8 2-ზე.
x=0 x=-4
განტოლება ახლა ამოხსნილია.
x^{2}+4x=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
x^{2}+4x+2^{2}=2^{2}
გაყავით 4, x წევრის კოეფიციენტი, 2-ზე, 2-ის მისაღებად. შემდეგ დაამატეთ 2-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+4x+4=4
აიყვანეთ კვადრატში 2.
\left(x+2\right)^{2}=4
დაშალეთ მამრავლებად x^{2}+4x+4. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{4}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+2=2 x+2=-2
გაამარტივეთ.
x=0 x=-4
გამოაკელით 2 განტოლების ორივე მხარეს.