მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x^{2}+3x-5=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-3±\sqrt{3^{2}-4\left(-5\right)}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 3-ით b და -5-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-5\right)}}{2}
აიყვანეთ კვადრატში 3.
x=\frac{-3±\sqrt{9+20}}{2}
გაამრავლეთ -4-ზე -5.
x=\frac{-3±\sqrt{29}}{2}
მიუმატეთ 9 20-ს.
x=\frac{\sqrt{29}-3}{2}
ახლა ამოხსენით განტოლება x=\frac{-3±\sqrt{29}}{2} როცა ± პლიუსია. მიუმატეთ -3 \sqrt{29}-ს.
x=\frac{-\sqrt{29}-3}{2}
ახლა ამოხსენით განტოლება x=\frac{-3±\sqrt{29}}{2} როცა ± მინუსია. გამოაკელით \sqrt{29} -3-ს.
x=\frac{\sqrt{29}-3}{2} x=\frac{-\sqrt{29}-3}{2}
განტოლება ახლა ამოხსნილია.
x^{2}+3x-5=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
x^{2}+3x-5-\left(-5\right)=-\left(-5\right)
მიუმატეთ 5 განტოლების ორივე მხარეს.
x^{2}+3x=-\left(-5\right)
-5-იდან იმავე რიცხვის გამოკლების შედეგია 0.
x^{2}+3x=5
გამოაკელით -5 0-ს.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=5+\left(\frac{3}{2}\right)^{2}
გაყავით 3, x წევრის კოეფიციენტი, 2-ზე, \frac{3}{2}-ის მისაღებად. შემდეგ დაამატეთ \frac{3}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+3x+\frac{9}{4}=5+\frac{9}{4}
აიყვანეთ კვადრატში \frac{3}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}+3x+\frac{9}{4}=\frac{29}{4}
მიუმატეთ 5 \frac{9}{4}-ს.
\left(x+\frac{3}{2}\right)^{2}=\frac{29}{4}
დაშალეთ მამრავლებად x^{2}+3x+\frac{9}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{29}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+\frac{3}{2}=\frac{\sqrt{29}}{2} x+\frac{3}{2}=-\frac{\sqrt{29}}{2}
გაამარტივეთ.
x=\frac{\sqrt{29}-3}{2} x=\frac{-\sqrt{29}-3}{2}
გამოაკელით \frac{3}{2} განტოლების ორივე მხარეს.