მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა
ვიქტორინა
Polynomial

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=2 ab=1\left(-8\right)=-8
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც x^{2}+ax+bx-8. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,8 -2,4
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -8.
-1+8=7 -2+4=2
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-2 b=4
ამონახსნი არის წყვილი, რომლის ჯამია 2.
\left(x^{2}-2x\right)+\left(4x-8\right)
ხელახლა დაწერეთ x^{2}+2x-8, როგორც \left(x^{2}-2x\right)+\left(4x-8\right).
x\left(x-2\right)+4\left(x-2\right)
x-ის პირველ, 4-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-2\right)\left(x+4\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-2 დისტრიბუციული თვისების გამოყენებით.
x^{2}+2x-8=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
აიყვანეთ კვადრატში 2.
x=\frac{-2±\sqrt{4+32}}{2}
გაამრავლეთ -4-ზე -8.
x=\frac{-2±\sqrt{36}}{2}
მიუმატეთ 4 32-ს.
x=\frac{-2±6}{2}
აიღეთ 36-ის კვადრატული ფესვი.
x=\frac{4}{2}
ახლა ამოხსენით განტოლება x=\frac{-2±6}{2} როცა ± პლიუსია. მიუმატეთ -2 6-ს.
x=2
გაყავით 4 2-ზე.
x=-\frac{8}{2}
ახლა ამოხსენით განტოლება x=\frac{-2±6}{2} როცა ± მინუსია. გამოაკელით 6 -2-ს.
x=-4
გაყავით -8 2-ზე.
x^{2}+2x-8=\left(x-2\right)\left(x-\left(-4\right)\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით 2 x_{1}-ისთვის და -4 x_{2}-ისთვის.
x^{2}+2x-8=\left(x-2\right)\left(x+4\right)
გაამარტივეთ გამოსახულება p-\left(-q\right) p+q-მდე.